分析 (1)由向量的加减运算,及向量基本定理,即可得到所求向量;
(2)运用向量的数量积的性质,向量的平方即为模的平方,计算即可得到所求值.
解答 解:
(1)$\overrightarrow{EA}$=$\overrightarrow{EB}$+$\overrightarrow{BA}$=$\frac{2}{3}$$\overrightarrow{DB}$-$\overrightarrow{AB}$=$\frac{2}{3}$($\overrightarrow{AB}$-$\overrightarrow{AD}$)-$\overrightarrow{AB}$
=-$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AD}$;
$\overrightarrow{EC}$=$\overrightarrow{EB}$+$\overrightarrow{BC}$=$\frac{2}{3}$($\overrightarrow{AB}$-$\overrightarrow{AD}$)+$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AD}$;
(2)若$\overrightarrow{AB}$•$\overrightarrow{AD}$=1,AD=1,AB=$\sqrt{3}$,
则$\overrightarrow{EA}$•$\overrightarrow{EC}$=(-$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AD}$)•($\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AD}$)
=-$\frac{2}{9}$$\overrightarrow{AB}$2-$\frac{2}{9}$$\overrightarrow{AD}$2-$\frac{5}{9}$$\overrightarrow{AB}$•$\overrightarrow{AD}$=-$\frac{2}{9}$×3-$\frac{2}{9}$×1-$\frac{5}{9}$×1
=-$\frac{13}{9}$.
点评 本题考查向量的加减和数量积的运算,考查向量的平方即为模的平方,以及运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{5π}{12}$,0) | B. | ($\frac{π}{4}$,0) | C. | (-$\frac{π}{6}$,0) | D. | ($\frac{π}{12}$,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\;1,\;\sqrt{2}]$ | B. | $(\;1,\;\sqrt{3}]$ | C. | (1,2] | D. | (1,4] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com