| A. | (-$\frac{5π}{12}$,0) | B. | ($\frac{π}{4}$,0) | C. | (-$\frac{π}{6}$,0) | D. | ($\frac{π}{12}$,0) |
分析 利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数的图象的对称性,求得在g(x)图象的所有对称中心中,离原点最近的对称中心.
解答 解:将函数f(x)=sin(2x+$\frac{π}{3}$)图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,可得y=sin(4x+$\frac{π}{3}$)的图象;
再将所得图象向左平移$\frac{π}{12}$个单位得到函数g(x)=sin(4x+$\frac{π}{3}$+$\frac{π}{3}$)=sin(4x+$\frac{2π}{3}$)的图象.
令4x+$\frac{2π}{3}$=kπ,求得x=$\frac{kπ}{4}$-$\frac{π}{6}$,k∈Z,令k=1,
可得在g(x)图象的所有对称中心中,离原点最近的对称中心为($\frac{π}{12}$,0),
故选:D.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$) | B. | ($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$) | C. | (-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$) | D. | (-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“垂直于同一个平面的两个平面平行”的逆否命题 | |
| B. | 若a<b,则|a|<|b| | |
| C. | 命题“若x>1,且y>1,则x+y>2”的否命题 | |
| D. | ?x∈(0,$\frac{π}{2}$),sinx<x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com