精英家教网 > 高中数学 > 题目详情
15.点P从点A(1,0)出发,沿单位圆x2+y2=1逆时针方向运动$\frac{2π}{3}$弧长到达点Q,则点Q的坐标是(  )
A.(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)B.($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$)C.(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$)D.(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$)

分析 由题意推出∠QOx角的大小,然后求出Q点的坐标.

解答 解:点P从(1,0)出发,沿单位圆逆时针方向运动$\frac{2π}{3}$弧长到达Q点,
所以∠QOx=$\frac{2π}{3}$,
所以Q(cos$\frac{2π}{3}$,sin$\frac{2π}{3}$),
即Q点的坐标为:(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$).
故选:A.

点评 本题通过角的终边的旋转,求出角的大小是解题的关键,考查计算能力,注意旋转方向,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.用反证法证明结论“实数a,b,c至少有两个大于1.”需要假设“实数a,b,c至多有一个大于1”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,}&{x≥0}\\{2{x}^{2}-5,}&{x<0}\end{array}\right.$编写一个程序,对每输入的一个x值,都得到相应的函数值,画出程序框图并编写相应的程序计算.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,矩形ABCD为本市沿海的一块滩涂湿地,其中阴影区域有丹顶鹤活动,曲线AC是以AD所在直线为对称轴的抛物线的一部分,其中AB=1km,BC=2km,现准备开发一个面积为0.6km2的湿地公园,要求不能破坏丹顶鹤活动区域.问:能否在AB边上取点E、在BC边上取点F,使得△BEF区域满足该项目的用地要求?若能,请给出点E、F的选址方案;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{lo{g}_{\frac{1}{2}}x,x>0}\end{array}\right.$,则f(f(4))=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}前n项的和为Sn,满足a1=0,an≥0,3an+12=an2+an+1(n∈N*)
(Ⅰ)用数学归纳法证明:1$-\frac{1}{n}$≤an<1(n∈N*)
(Ⅱ)求证:an<an+1(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.执行如图所示的程序框图,则输出S的值为(  )
A.$\frac{3}{4}$B.$\frac{5}{6}$C.$\frac{11}{12}$D.$\frac{25}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞]上单调递增,若实数a满足f(log2a)+f($lo{g}_{\frac{1}{2}}a$)≤2f(1),则a的取值范围是(  )
A.[1,2]B.(0,$\frac{1}{2}$]C.(0,2]D.[$\frac{1}{2}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将函数f(x)=sin(2x+$\frac{π}{3}$)图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图象向左平移$\frac{π}{12}$个单位得到函数g(x)的图象.在g(x)图象的所有对称中心中,离原点最近的对称中心为(  )
A.(-$\frac{5π}{12}$,0)B.($\frac{π}{4}$,0)C.(-$\frac{π}{6}$,0)D.($\frac{π}{12}$,0)

查看答案和解析>>

同步练习册答案