精英家教网 > 高中数学 > 题目详情
16.已知($\root{3}{{x}^{2}}$+3x2n的展开式中,各项系数的和与其各项二项式系数的和之比为32.
(1)求n;
(2)求展开式中二项式系数最大的项.

分析 (1)令二项式中的x=1得到展开式中的各项系数的和,根据二项式系数和公式得到各项二项式系数的和,据已知列出方程求出n的值.
(2)将n的值代入二项式,根据中间项的二项式系数最大,判断出二项式系数最大的项,利用二项展开式的通项公式求出该项.

解答 解:(1)令x=1,则($\root{3}{{x}^{2}}$+3x2n展开式的各项系数和为4n,又($\root{3}{{x}^{2}}$+3x2n展开式的各项二项式系数和为2n
所以$\frac{{4}^{n}}{{2}^{n}}$=32,即2n=32,解得n=5;
(2)由(1)可知:n=5,所以($\root{3}{{x}^{2}}$+3x25展开式的中间两项二项式系数最大,即
T3=C52$(\root{3}{{x}^{2}})^{3}$(3x22=90x6
T4=C53($\root{3}{{x}^{2}}$)2(3x23=270x${\;}^{\frac{22}{3}}$.

点评 求二项展开式的系数和问题一般通过观察通过赋值求出系数和;求二项展开式的特定项问题,一般利用的工具是二项展开式的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,}&{x≥0}\\{2{x}^{2}-5,}&{x<0}\end{array}\right.$编写一个程序,对每输入的一个x值,都得到相应的函数值,画出程序框图并编写相应的程序计算.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.执行如图所示的程序框图,则输出S的值为(  )
A.$\frac{3}{4}$B.$\frac{5}{6}$C.$\frac{11}{12}$D.$\frac{25}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞]上单调递增,若实数a满足f(log2a)+f($lo{g}_{\frac{1}{2}}a$)≤2f(1),则a的取值范围是(  )
A.[1,2]B.(0,$\frac{1}{2}$]C.(0,2]D.[$\frac{1}{2}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,PD=DC=a,E是PC的中点.
(1)求四棱锥P-ABCD的体积;
(2)求直线PB与平面ABCD所成角的正切值;
(3)证明:PA∥平面EDB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若x,y∈R,且3x+9y=2,则x+2y的最大值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.分析法又叫执果索因法,若使用分析法证明:设a<b<c,且a+b+c=0,求证:b2-ac<3c2,则证明的依据应是(  )
A.c-b>0B.c-a>0C.(c-b)(c-a)>0D.(c-b)(c-a)<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将函数f(x)=sin(2x+$\frac{π}{3}$)图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图象向左平移$\frac{π}{12}$个单位得到函数g(x)的图象.在g(x)图象的所有对称中心中,离原点最近的对称中心为(  )
A.(-$\frac{5π}{12}$,0)B.($\frac{π}{4}$,0)C.(-$\frac{π}{6}$,0)D.($\frac{π}{12}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某高三毕业班的六个科任老师站一排合影留念,其中仅有的两名女老师要求相邻站在一起,而男老师甲不能站在两端,则不同的安排方法的种数是(  )
A.72B.144C.108D.192

查看答案和解析>>

同步练习册答案