精英家教网 > 高中数学 > 题目详情
(1)在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值.
(2)对5副不同的手套进行不放回抽取,甲先任取一只,乙再任取一只,然后甲又任取一只,最后乙再任取一只.对于下列事件:①A:甲正好取得两只配对手套;②B:乙正好取得两只配对手套.试判断事件A与B是否独立?并证明你的结论.
考点:点的极坐标和直角坐标的互化,古典概型及其概率计算公式,直线与圆的位置关系
专题:计算题
分析:(1)先圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得直角坐标系,再利用直角坐标方程求解即可.
(2)从10只手套中任取4只有C104种不同的取法,甲先任取一只要从5对中取一对且一对中又有两种不同的取法,余下的乙从8只手套中取两只,有C82中取法,根据古典概型公式得到结果.乙正好取得两只配对手套做法同乙完全相同.要验证两个时间是否独立,只要验证两个概率的乘积是否等于两个事件同时发生的概率,代入解出的结果进行验证.
解答: 解:(1)p2=2pcosθ,圆ρ=2cosθ的普通方程为:x2+y2=2x,(x-1)2+y2=1,
直线3ρcosθ+4ρsinθ+a=0的普通方程为:3x+4y+a=0,
又圆与直线相切,所以
|3•1+4•0+a|
9+16
=1,解得:a=2,或a=-8.
(2)设“甲正好取得两只配对手套”为事件A
∵从10只手套中任取4只有C104种不同的取法,
甲先任取一只要从5对中取一对且一对中又有两种不同的取法,
余下的乙从8只手套中取两只,有C82中取法,
根据古典概型公式得到
P(A)=
C
1
5
×2×
A
2
8
A
4
10
=
1
9

P(B)=
C
1
5
×2×
A
2
8
A
4
10
=
1
9

∵从10只手套中任取4只有C104种不同的取法,
甲乙两个人都取得成对的手套有C52×2×C21×2种不同取法,
∴P(AB)=
C
2
5
×2×
C
1
2
×2
A
4
10
=
1
63

又P(A)=
1
9
,P(B)=
1
9

∴P(A)P(B)=
1
81

∴P(A)P(B)≠P(AB),故A与B是不独立的.
点评:(1)本小题主要考查曲线的极坐标方程等基本知识,考查转化问题的能力.
(2)对于第(2)小问,手套或鞋子成对问题是概率题目中较困难的问题,可拿一个典型题目认真分析,看清题目解答过程,使得以后遇到知道怎么考虑.本题还考查相互独立事件,一般地,如果事件 相互独立,那么事件同时发生的概率,等于每个事件发生的概率的积.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆{x=2
3
cosθ   y=
3
sinθ
}的左、右焦点分别为F1、F2,上顶点为B,则
BF1
BF2
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解某校高三毕业班报考体育专业学生的体重(单位:千克)情况,将从该市某学校抽取的样本数据整理后得到如下频率分布直方图.已知图中从左至右前3个小组的频率之比为1:2:3,其中第2小组的频数为12.
(I)求该校报考体育专业学生的总人数n;
(Ⅱ)若用这所学校的样本数据来估计该市的总体情况,现从该市报考体育专业的学生中任选3人,设ξ表示体重超过60千克的学生人数,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,是圆O的切线,切点为A,D点在圆内,DB与圆相交于C,若BC=DC=3,OD=2,AB=6,则圆O的半径为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若对?n∈N*,数列an均满足2an=an+1+an-1,现已知数列共有20项,其中偶数项的和为15,前20项的和为25,求该数列的公差d=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是
1
3
,遇到红灯时停留的时间都是2 分钟.设这名学生在路上遇到红灯的个数为变量ξ、停留的总时间为变量X,
(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(2)这名学生在上学路上遇到红灯的个数至多是2个的概率.
(3)求X的标准差
D(X)

查看答案和解析>>

科目:高中数学 来源: 题型:

设随机变量ξ~B(2,p),η~B(4,p),若P(ξ≥1)=
5
9
,则P(η≥2)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数,f(x)=cosx,g(x)=-x2+4x-3,若存在实数a,b∈R,满足g(a)=f(b),则a的取值范围是(  )
A、[1,3]
B、(1,3)
C、[2-
2
,2+
2
]
D、(2-
2
,2+
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-6x+5,x∈[1,a],并且函数f(x)的最大值为f(a),则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案