精英家教网 > 高中数学 > 题目详情
15.已知cosα=m(m≠0),α∈(2kπ,2kπ+π)(k∈Z),则tanα=(  )
A.$\frac{\sqrt{1-{m}^{2}}}{m}$B.-$\frac{\sqrt{1-{m}^{2}}}{m}$C.±$\frac{\sqrt{1-{m}^{2}}}{m}$D.$\frac{m}{\sqrt{1-{m}^{2}}}$

分析 根据同角三角函数间的基本关系进行求解即可.

解答 解:∵α∈(2kπ,2kπ+π)(k∈Z),
∴sinα>0,
则sinα=$\sqrt{1-{m}^{2}}$,
则tanα=$\frac{sinα}{cosα}$=$\frac{\sqrt{1-{m}^{2}}}{m}$,
故选:A

点评 本题主要考查三角函数值的计算,根据同角的三角函数关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在三棱锥S-ABC中,平面SAB⊥平面SBC,BC⊥SA,AS=AB,过A作AP⊥SB,垂足为F,点E、G分别是棱SA,SC的中点
求证:(1)平面EFG∥平面ABC;
(2)AB⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{5}(1-x)|(x<1)}\\{-(x-2)^{2}+2(x≥1)}\end{array}\right.$,关于x的方程f(x+$\frac{1}{x}$-2)=a的实根个数不可能为(  )
A.5个B.6个C.7个D.8个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.5名女生和6名男生站成一排,每名女生旁边至少有一男生的不同站法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设ω=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i
(1)求证:1+ω+ω2=0;
(2)计算:(1+ω-ω2)(1-ω+ω2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图1,已知四边形ABCD的对角线AC与BD互相垂直,∠A=60°,∠C=90°,CD=CB=2,将△ABD沿BD折起,得到三棱锥A′-BCD,如图2.
(1)当A′C=2,求证:A′C⊥平面BCD;
(2)设BD的中点为E,当三棱锥A′-BCD的体积最大时,求点E到平面A′BC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.二项式(2+x)n(n∈N*)的展开式中,二项式系数最大的是第4项和第5项,则n=7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设复数z=$\frac{a+i}{1-i}$对应的点在直线x+y-1=0上,则实数a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知{an}是等比数列,且a5=4,a7=6,求a9

查看答案和解析>>

同步练习册答案