【题目】如图,已知直四棱柱ABCD—A1B1C1D1中,AA1=2,底面ABCD是直角梯形,∠A为直角,AB∥CD,AB=4,AD=2,DC=2.
(Ⅰ)求线段BC1的长度;
(Ⅱ)异面直线BC1与DC所成角的余弦值.
【答案】(1) (2)
【解析】试题分析:(1)以D为坐标原点,以DA、DC、DD1所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系.求出点的坐标,从而得到线段BC1的长度;
(2)求出两条直线的方向向量,代入公式即可.
试题解析:
(I)以D为坐标原点,以DA、DC、DD1所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系.
则A(2,0,0),B(2,4,0),C(0,2,0),C1(0,2,2),
∴=(0,2,0),=(-2,-2,2),||=2,
(II)由(I)可知,=(0,2,0),=(-2,-2,2)
∴cos〈,〉==
∴异面直线DC与BC1所成的角的余弦值为.
科目:高中数学 来源: 题型:
【题目】已知椭圆()离心率等于,P(2,3)、Q(2,﹣3)是椭圆上的两点.
(1)求椭圆C的方程;
(2)A,B是椭圆上位于直线PQ两侧的动点,若直线AB的斜率为,求四边形APBQ面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中P﹣ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.
(1)求证:AD⊥PB;
(2)已知点M是线段PC上,MC=λPM,且PA∥平面MQB,求实数λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.
(1)在图中画出这个正方形(不必说明画法和理由);
(2)求直线AF与平面α所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点P为椭圆C: =1(a>b>0)的下顶点,M,N在椭圆上,若四边形OPMN为平行四边形,α为直线ON的倾斜角,若α∈( , ],则椭圆C的离心率的取值范围为( )
A.(0, ]
B.(0, ]
C.[ , ]
D.[ , ]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=mlnx﹣x2+2(m∈R).
(1)当m=1时,求f(x)的单调区间;
(2)若f(x)在x=1时取得极大值,求证:f(x)﹣f′(x)≤4x﹣3;
(3)若m≤8,当x≥1时,恒有f(x)﹣f′(x)≤4x﹣3恒成立,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=e2x+ln(x+a).
(1)当a=1时,①求f(x)在(0,1)处的切线方程;②当x≥0时,求证:f(x)≥(x+1)2+x.
(2)若存在x0∈[0,+∞),使得 成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com