【题目】已知椭圆()离心率等于,P(2,3)、Q(2,﹣3)是椭圆上的两点.
(1)求椭圆C的方程;
(2)A,B是椭圆上位于直线PQ两侧的动点,若直线AB的斜率为,求四边形APBQ面积的最大值.
【答案】(1);(2)
【解析】试题分析:(1)由离心率得,结合a2=b2+c2,将点P(2,3)代入椭圆方程即可得解;
(2)设A(x1,y1),B(x2,y2),设AB方程,与椭圆联立得x2+tx+t2﹣12=0,利用SAPBQ=S△APQ+S△BPQ=,结合韦达定理求最值即可.
试题解析:
(1)根据题意,椭圆离心率等于,则有,
又a2=b2+c2,所以a2=4c2,b2=3c2
设椭圆方程为,代入(2,3),得c2=4,a2=16,b2=12
椭圆方程为;
(2)设A(x1,y1),B(x2,y2)
设AB方程为,
由,化简得:x2+tx+t2﹣12=0,
△=t2﹣4(t2﹣12)>0,解可得:﹣4<t<4,
,
又P(2,3),Q(2,﹣3)
SAPBQ=S△APQ+S△BPQ=
当t=0时,S最大为.
科目:高中数学 来源: 题型:
【题目】设函数,其中.已知.
(Ⅰ)求.
(Ⅱ)将函数的图象上各点的横坐标伸长为原来的倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数的图象,求在上的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,点为平面上动点,过点作直线的垂线,垂足为,且.
(1)求动点的轨迹方程;
(2)过点的直线与轨迹交于两点,在处分别作轨迹的切线交于点,设直线的斜率分别为,,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知y=f(x)为二次函数,若y=f(x)在x=2处取得最小值﹣4,且y=f(x)的图象经过原点,
(1)求f(x)的表达式;
(2)求函数在区间上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】雾霾影响人们的身体健康,越来越多的人开始关心如何少产生雾霾,春节前夕,某市健康协会为了了解公众对“适当甚至不燃放烟花爆竹”的态度,随机采访了50人,将凋查情况进行整理后制成下表:
年龄(岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 4 | 6 | 12 | 7 | 3 | 3 |
(1)以赞同人数的频率为概率,若再随机采访3人,求至少有1人持赞同态度的概率;
(2)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,记选中的4人中不赞同“适当甚至不燃放烟花爆竹”的人数为X,求随机变量X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4﹣1:几何证明选讲
如图,已知PA是⊙O的切线,A是切点,直线PO交⊙O于B、C两点,D是OC的中点,连接AD并延长交⊙O于点E,若PA=2 ,∠APB=30°.
(1)求∠AEC的大小;
(2)求AE的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足, ,其中.
(1)设,求证:数列是等差数列,并求出的通项公式;
(2)设,数列的前项和为,是否存在正整数,使得对于恒成立,若存在,求出的最小值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知直四棱柱ABCD—A1B1C1D1中,AA1=2,底面ABCD是直角梯形,∠A为直角,AB∥CD,AB=4,AD=2,DC=2.
(Ⅰ)求线段BC1的长度;
(Ⅱ)异面直线BC1与DC所成角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com