精英家教网 > 高中数学 > 题目详情

【题目】已知集合A={x|2x2﹣3x﹣9≤0},B={x|x≥m}.若(RA)∩B=B,则实数m的值可以是(
A.1
B.2
C.3
D.4

【答案】D
【解析】解:由A中不等式变形得:(2x+3)(x﹣3)≤0,
解得:﹣ ≤x≤3,即A=[﹣ ,3],
RA=(﹣∞,﹣ )∪(3,+∞),
∵B=[m,+∞),且(RA)∩B=B,
∴BRA,即m>3,
则实数m的值可以是4,
故选:D.
【考点精析】认真审题,首先需要了解交、并、补集的混合运算(求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(1)若整数满足关系式,证明:

(2)试写出不定方程的一组正整数解,并对此解验证

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,过对角线的一个平面交于点,交.

①四边形一定是平行四边形;

②四边形有可能是正方形;

③四边形在底面内的投影一定是正方形;

④四边形有可能垂直于平面

以上结论正确的为_______________.(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=

(1)若f(x)的值域为R,求实数a的取值范围;

(2)若函数f(x)在(﹣∞,1)上为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,△ABC内接于圆O,D是 的中点,∠BAC的平分线分别交BC和圆O于点E,F.

(1)求证:BF是△ABE外接圆的切线;
(2)若AB=3,AC=2,求DB2﹣DA2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如图所示,记A为此几何体所有棱的长度构成的集合,则(

A.3∈A
B.5∈A
C.2 ∈A
D.4 ∈A

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆离心率等于,P(2,3)、Q(2,﹣3)是椭圆上的两点.

(1)求椭圆C的方程;

(2)A,B是椭圆上位于直线PQ两侧的动点,若直线AB的斜率为,求四边形APBQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某居民区的物业部门每月向居民收取卫生费,计费方法如下:3人和3人以下的住户,每户收取5元;超过3人的住户,每超出1人加收1.2元.设计一个算法,根据输入的人数,计算应收取的卫生费,并画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体ABCD﹣A1B1C1D1中,AB=16BC=10AA1=8,点EF分别在A1B1D1C1上,A1E=D1F=4,过点EF的平面α与此长方体的面相交,交线围成一个正方形.

1)在图中画出这个正方形(不必说明画法和理由);

2)求直线AF与平面α所成角的正弦值.

查看答案和解析>>

同步练习册答案