精英家教网 > 高中数学 > 题目详情
已知椭圆5x2+9y2=45,椭圆的右焦点为F,
(1)求过点F且斜率为1的直线被椭圆截得的弦长;
(2)判断点A(1,1)与椭圆的位置关系,并求以A为中点椭圆的弦所在的直线方程.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)设出直线的方程,联立直线与椭圆的方程利用由弦长公式可得答案.
(2)设以A(1,1)为中点椭圆的弦与椭圆交于E(x1,y1),F(x2,y2),A(1,1)为EF中点,x1+x2=2,y1+y2=2,利用点差法能够求出以A(1,1)为中点椭圆的弦所在的直线方程.
解答: 解:(1)由题意可得:过点F且斜率为1的直线方程为y=x-2,
联立直线与椭圆的方程可得:14x2-36x-9=0,
∴x1+x2=
18
7
,x1•x2=-
9
14

由弦长公式可得:|MN|=
1+1
(
18
7
)2+
36
14
=
30
7

(2)设以A(1,1)为中点椭圆的弦与椭圆交于E(x1,y1),F(x2,y2),
∵A(1,1)为EF中点,
∴x1+x2=2,y1+y2=2,
把E(x1,y1),F(x2,y2)分别代入椭圆5x2+9y2=45,
得5x12+9y12=45,5x22+9y22=45
∴5(x1+x2)(x1-x2)+9(y1+y2)(y1-y2)=0,
∴10(x1-x2)+18(y1-y2)=0,
∴k=
y1-y2
x1-x2
=-
5
9

∴以A(1,1)为中点椭圆的弦所在的直线方程为:y-1=-
5
9
(x-1),
整理,得5x+9y-14=0.
点评:本题主要考查了椭圆的应用,考查了弦长问题与弦中点问题,正确运用点差法是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图已知圆的半径为10,其内接三角形ABC的内角A、B分别为60°和45°,现向圆内随机撒一粒豆子,则豆子落在三角形ABC内的概率为(  )
A、
3+
3
16π
B、
3+
3
C、
3+
3
D、
16π
3+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示是一个几何体的三视图,若该几何体的体积为
1
2
,则主视图中三角形的高x的值为(  )
A、
1
2
B、
3
4
C、1
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(0,-2),B(0,4),动点P(x,y)满足
PA
PB
=y2-8
,动点P的轨迹与直线y=x+2交于C,D两点.
(1)求动点P的轨迹方程;    
(2)求弦长|CD|.

查看答案和解析>>

科目:高中数学 来源: 题型:

某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:
喜欢 不喜欢 合计
大于40岁 20 5 25
20岁至40岁 10 20 30
合计 30 25 55
(Ⅰ)判断是否有99.5%的把握认为喜欢“人文景观”景点与年龄有关?
(Ⅱ)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率.
下面的临界值表供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,有一条光线沿直线y=4射到抛物线y2=4x上的一点P,经抛物线反射后,反射光线与抛物线的交于另一点Q,O是抛物线的顶点,F是抛物线的焦点,求弦PQ的斜率和△OPQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+(2b+1)x-a(a,b∈R,a≠0)
(1)当a=b时,f(x)在[
a
2
,a]上有最小值
3a
4
,求实数a的值;
(2)若f(x)-2在区间[1,2]上至少有一个零点,求a2+b2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若方程x2-2x-m=0在-1≤x≤1上有解,则实数m的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z满足(1+i)z=1+2i(其中i是虚数单位),则复数z对应的点位于复平面的(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步练习册答案