精英家教网 > 高中数学 > 题目详情
如图所示是一个几何体的三视图,若该几何体的体积为
1
2
,则主视图中三角形的高x的值为(  )
A、
1
2
B、
3
4
C、1
D、
3
2
考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:几何体为四棱锥与三棱锥的组合体,且三棱锥与四棱锥的高都为x,判断几何体的底面形状,利用三视图的数据求出底面面积,代入棱锥的体积公式,根据几何体的体积为
1
2
,求出x.
解答: 解:由三视图知:几何体为四棱锥与三棱锥的组合体,且三棱锥与四棱锥的高都为x,
底面分别是边长为1的正方形与直角边长为1的等腰直角三角形,
∴几何体的体积V=
1
3
×(12+
1
2
×1×1)×x=
1
2

∴x=1.
故选:C.
点评:本题考查了由三视图求几何体的体积,解答此类问题的关键是判断几何体的形状及数据所对应的几何量.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(1,2)
b
=(3,4)
,则
a
b
上的投影=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数f(x)是最小正周期为2π的偶函数,f′(x)是f(x)的导函数,当x∈[0,π]时;0<f(x)<2;当x∈(0,π)且x≠
π
2
时,(x-
π
2
)f′(x)>0
,则函数y=f(x)-|tanx|在区间[-2π,2π]上的零点个数为(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,则该几何体的体积为(  )
A、6
B、2
3
C、3
D、3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若某几何体的三视图(单位:cm)如图所示,其中左视图是一个边长为2的正三角形,则这个几何体的体积是(  )
A、2cm2
B、
3
cm3
C、3
3
cm3
D、3cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

“m>n>1”是“logm2<logn2”的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=alnx-bx2,其图象在点P(2,f(2))处切线的斜率为-3.
(1)求函数f(x)的单调区间(用只含有b的式子表示);
(2)当a=2时,令g(x)=f(x)-kx,设x1,x2(x1<x2)是函数g(x)=0的两个根,x0是x1,x2的等差中项,求证:g′(x0)<0(g′(x)为函数g(x)的导函数).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆5x2+9y2=45,椭圆的右焦点为F,
(1)求过点F且斜率为1的直线被椭圆截得的弦长;
(2)判断点A(1,1)与椭圆的位置关系,并求以A为中点椭圆的弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=-x2+ax-b,a、b∈[0,4],a、b∈R,则f(1)>0的概率为
 

查看答案和解析>>

同步练习册答案