精英家教网 > 高中数学 > 题目详情
若复数z满足(1+i)z=1+2i(其中i是虚数单位),则复数z对应的点位于复平面的(  )
A、第一象限B、第二象限
C、第三象限D、第四象限
考点:复数代数形式的乘除运算,复数的代数表示法及其几何意义
专题:数系的扩充和复数
分析:直接化简复数(1+i)z=1+2i为a+bi的形式,即可确定复数在复平面内对应的点所在象限.
解答: 解:∵(1+i)z=1+2iz
1+2i
1+i
=
(1+2i)(1-i)
(1+i)(1-i)
=
3+I
2
,复数z在复平面内对应的点为(
3
2
1
2
),
∴复数z在复平面内对应的点在第一象限.
故选:A.
点评:本题考查复数的基本运算,复数的几何意义,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆5x2+9y2=45,椭圆的右焦点为F,
(1)求过点F且斜率为1的直线被椭圆截得的弦长;
(2)判断点A(1,1)与椭圆的位置关系,并求以A为中点椭圆的弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=-x2+ax-b,a、b∈[0,4],a、b∈R,则f(1)>0的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=
|x|
|x|-1
给出下列四个命题:
①当x>0时,y=f(x)单调递减且没有最值;
②方程f(x)=kx+b(k≠0)一定有解;
③如果方程f(x)=k有解,则解的个数一定是偶数;
④y=f(x)是偶函数且有最小值.则其中真命题是
 
.(只要写标题号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式(
20
n
-m)•ln(
m
n
)≥0对任意正整数n恒成立,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U是实数集R,集合M={x|x2>2x},N={x|log2(x-1)≤0},则(∁UM)∩N为(  )
A、{x|1<x<2}
B、{x|1≤x≤2}
C、{x|1<x≤2}
D、{x|1≤x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设D是图中边长为2的正方形区域,E是函数y=x3的图象与x轴及x=±1围成的阴影区域.向D中随机投一点,则该点落入E中的概率为(  )
A、
1
16
B、
1
8
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O是△ABC内一点,若
OA
+2
OB
+3
OC
=
0
,则△AOC与△ABC的面积的比值为(  )
A、
1
2
B、
1
5
C、
1
3
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:已知直线与抛物线y2=2px(p>0)交于A,B两点,且OA⊥OB,OD⊥AB交AB于点D,点D的坐标为(2,1).
(1)求p的值;
(2)求△AOB的面积.

查看答案和解析>>

同步练习册答案