精英家教网 > 高中数学 > 题目详情
如图,直线PA⊥平面ABCD,四边形ABCD是正方形,且PA=AD=2,点E、F、G分别是线段PA、PD、CD的中点.
(1)求异面直线EG与BD所成角的大小(结果用反三角表示);
(2)在线段CD上是否存在一点Q,使BF⊥EQ,若存在,求出DQ的长,若不存在,请说明理由.
考点:异面直线及其所成的角,直线与平面垂直的性质
专题:空间角
分析:(1)以A为原点建立如图坐标系,求出E,G,B,D,
EG
=(1,2,-1),
BD
=(-2,2,0)
利用数量积求解即可.
(2)假设CD存在点Q,使BF⊥EQ,设DQ=x,则Q(x,2,0),F(0,1,1),通过向量的数量积是否为0.所判断BF⊥EQ.
解答: [理]
解:(1)以A为原点建立如图坐标系
则E(0,0,1),G(1,2,0),B(2,0,0),D(0,2,0)
因此
EG
=(1,2,-1),
BD
=(-2,2,0)

所以cosα=|
EG
BD
|
EG
|•|
BD
|
|=
2
6
•2
2
=
3
6

即异面直线EG与BD所成角的为arccos
3
6

(2)假设CD存在点Q,使BF⊥EQ,设DQ=x,则Q(x,2,0),
F(0,1,1)
因此
BF
=(-2,1,1),
EQ
=(x,2,-1)

因为BF⊥EQ所以
BF
EQ
=0

DQ=x=
1
2

所以CD存在点Q,使BF⊥EQ.
点评:本题考查向量法求解异面直线所成角以及直线的垂直的判断,考查转化思想以及计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=
1
3
x3+
1
2
(a-4)x2+2(2-a)x+a的图象与y轴的交点和原点的距离小于或等于1.
(1)求实数a的取值范围;
(2)是否存在这样的区间,对任意的a的可能取值,函数f(x)在该区间上都是单调递增的?若存在,则求出这样的区间,若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面四个命题:
①命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②把函数y=3sin(2x+
π
3
)的图象向右平移
π
3
个单位,得到y=3sin2x的图象;
③正方体的内切球与其外接球的表面积之比为1:3;  
④若f(x)=sinxcosx,则存在正实数a,使得f(x-a)为奇函数,f(x+a)为偶函数.
其中所有正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

用1,2,3,4,5,6,7七个数字排列组成七位数,使其中偶位数上必定是偶数,那么可得七位数的个数是(  )
A、A44
B、A44A33
C、6A33
D、C152C403A55

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,一个焦点为F(0,-2
2
),对应的准线方程为y=-
9
2
4

(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在直线l,使l与椭圆C交于不同的两点M,N,且使线段MN恰好被直线x=-
1
2
平分?若存在,求l的倾斜角θ的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,正方体ABCD-A1B1C1D1的棱长为1,点M、N分别是面对角线A1B和B1D1的中点.
(1)求证:MN⊥AB;
(2)求三棱锥N-MBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,曲线C1的参数方程为
x=1-t
y=2+3t
(t为参数),在极坐标系(与直角坐标系xQy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C2的方程为ρ=2cosθ,则曲线C1与C2的位置关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=(1+
1
n2
)an+
1
3n-1
,n∈N*

(1)求证:当n≥2且n∈N*时,an≥3;
(2)求证:an<e3,n∈N*(e为自然对数的底数,参考数据ln3<1.1,ln4<1.4).

查看答案和解析>>

科目:高中数学 来源: 题型:

一个正三棱锥的四个顶点都在半径为R的球面上,其中底面的三个顶点在该球的一个大圆上,且该正三棱锥的体积是
3
4
,则球的体积为(  )
A、
1
3
π
B、
1
6
π
C、
32
3
π
D、
4
3
π

查看答案和解析>>

同步练习册答案