精英家教网 > 高中数学 > 题目详情
现要将编号为1,2,3,4的四个小球全部放入甲乙丙三个盒中,每个盒中至少放一个球,且甲盒不能放1号球,乙盒不能放入2号球,则所有不同的放法种数为多少种?
考点:排列、组合及简单计数问题
专题:排列组合
分析:由题意知元素的限制条件比较多,可以利用间接法,先不考虑甲乙两盒的,再排除甲盒有1号,乙盒有2号球球,还要加上盒有1号球同时乙盒有2号球,问题得以解决.
解答: 解:不考虑甲盒不能放1号球,乙盒不能放入2号球,一共有
C
2
4
A
3
3
=36种,
甲盒为1号球有
A
2
2
•(
C
2
3
+
C
1
3
)
=12种,乙盒有2号球也有12种,
甲盒有1号球同时乙盒有2号球1+2×2=5,所以不同的放法为36-12-12+5=17种,
点评:本题考查排列组合及简单的计数原理,综合利用两个原理解决是关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx,g(x)=ax+b,h(x)=
f(x),(x>0)
g(x),(x≤0)

(Ⅰ)若不等式f(x)≥g′(x)恒成立,讨论方程h(x)=
b
2
的解的个数;
(Ⅱ)当a=-1时,若方程h(x)=
b
2
存在三个不同实数解x1,x2,x3,试比较x1+x2+x3
1
2
1
e
-
1
e3
)的大小并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知圆O:x2+y2=4与y轴正半轴交于点P,A(-1,0),B(1,0),直线l与圆O切于点S(l不垂直于x轴),抛物线过A、B两点且以l为准线.
(1)当点S在圆周上运动时,试求抛物线的焦点Q的轨迹方程;
(2)设M,N是(1)中的点Q的轨迹上除与y轴两个交点外的不同两点,且
PM
=t
PN
(t∈R),问:△MON(O为坐标原点)的面积是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

举例说明,在同一坐标系内.
(1)y=f(x)与x=f-1(y)的图象有什么关系?
(2)y=f(x)与y=f-1(x)的图象有什么关系?

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算A
 
m
x
=x(x-1)(x-2)…(x-m+1),其中x∈R,m∈N,已知函数f(x)=aA
 
3
x+1
-12A
 
2
x
+1,(a∈R,且a≠0)在x=1处取得极值,且方程f(x)=6x-
16
x
在区间(m,m+1)(m∈N*)内有且只有两两不相等的实数根,则(1)实数a的值为
 
;(2)正整数m的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:?x∈[-1,1],x+m>0命题q:方程
x2
m-4
-
y2
m+2
=1表示双曲线.
(1)写出命题p的否定;
(2)若“p或q”为真,“p且q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x、y满足方程x2+y2-4x+1=0.
(1)求y-x的最大值和最小值;
(2)求x2+y2的最最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方形ABCD中,AB=4,BC=1,E为DC的四等分点(靠近C处),F为线段EC上一动点(包括端点),现将△AFD沿AF折起,使D点在平面内的射影恰好落在边AB上,则当F运动时,二面角D-AF-B的平面角余弦值的变化范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

两名高一年级的学生被允许参加高二年级的学生象棋比赛,每两名参赛选手之间都比赛一次,胜者得1分,和棋各得0.5分,输者得0分,即每场比赛双方的得分之和是1分.两名高一年级的学生共得8分,且每名高二年级的学生都得相同分数,则有
 
名高二年级的学生参加比赛.(结果用数值作答)

查看答案和解析>>

同步练习册答案