精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若函数有且只有一个零点,求实数的值;

(2)证明:当时, .

【答案】(1)1;(2)见解析.

【解析】试题分析:

(1)讨论函数的单调性可得满足题意时,解得.

(2)结合(1)的结论不妨设,结合函数的性质即可证得题中的不等式.

试题解析:

(1)方法1:

时, 时, 时,

上单调递减,在上单调递增,

,∵有且只有一个零点,

,∴.

方法2:由题意知方程仅有一实根,

(),

时, 时, 时,

上单调递增,在上单调递减,

所以要使仅有一个零点,则.

方法3:函数有且只有一个零点即为直线与曲线相切,设切点为

,∴,∴

所以实数的值为1.

(2)由(1)知,即当且仅当时取等号,

,令得,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 2Sn=an+1﹣2n+1+1,n∈N* , 且a1 , a2+5,a3成等差数列.
(1)求a1
(2)证明 为等比数列,并求数列{an}的通项;
(3)设bn=log3(an+2n),且Tn= ,证明Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数f(x)是定义在(﹣3,3)上的奇函数,当0<x<3时,函数f(x)的图象如图所示,那么不等式f(x)cosx<0的解集是(

A.(﹣3,﹣ )∪(0,1)∪( ,3)
B.(﹣ ,﹣1)∪(0,1)∪( ,3)
C.(﹣3,﹣1)∪(0,1)∪(1,3)
D.(﹣3,﹣ )∪(0,1)∪(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn , 且Sn=2n2+3n;
(1)求它的通项an
(2)若bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列四组函数中,f(x)与g(x)表示同一函数的是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD﹣A1B1C1D1中,O是底面ABCD的中心,E为CC1的中点,那么异面直线OE与AD1所成角的余弦值等于(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC= ,O,M分别为AB,VA的中点.

(1)求证:VB∥平面MOC;
(2)求证:平面MOC⊥平面VAB
(3)求三棱锥V﹣ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数满足f(x)=ax2+bx+c(a≠0),满足f(x+1)﹣f(x)=2x,且f(0)=1,
(1)函数f(x)的解析式:
(2)函数f(x)在区间[﹣1,1]上的最大值和最小值:
(3)若当x∈R时,不等式f(x)>3x﹣a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2﹣(m﹣1)x+2m
(1)若函数f(x)>0在(0,+∞)上恒成立,求m的取值范围;
(2)若函数f(x)在(0,1)内有零点,求m的取值范围.

查看答案和解析>>

同步练习册答案