| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $2\sqrt{2}$ |
分析 设A(x1,y1),B(x2,y2),根据AB的中点P的坐标,表示出斜率,从而得到关于a、b的关系式,再求离心率.
解答 解:设A(x1,y1),B(x2,y2),
则代入双曲线方程,相减可得-$\frac{({x}_{1}-{x}_{2})({x}_{1}+{x}_{2})}{{a}^{2}}=\frac{({y}_{1}-{y}_{2})({y}_{1}+{y}_{2})}{{b}^{2}}$,
∵点P(6,2)是AB的中点,
∴x1+x2=12,y1+y2=4,
∵直线l的斜率为3,∴$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=3,
∴a2=b2,c2=2a2,
∴e=$\sqrt{2}$.
故选A.
点评 本题考查了双曲线的简单性质,解题的关键是利用“设而不求”法求直线l的斜率.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{3}$ | C. | $\frac{3}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{10}$ | B. | $\frac{\sqrt{10}}{2}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com