精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2x-1

(1)用函数的单调性的定义证明f(x)在(1,+∞)上是减函数.
(2)求函数f(x)在[2,6]上的最大值和最小值.
分析:(1)任取x1,x2∈(1,+∞),且x1<x2,依据减函数的定义,利用作差证明f(x1)>f(x2)即可;
(2)由(1)知函数f(x)在(1,+∞)上的单调性,进而得到f(x)在[2,6]上的单调性,由单调性即可求得其最值;
解答:(1)证明:任取x1,x2∈(1,+∞),且x1<x2
则f(x1)-f(x2)=
2
x1-1
-
2
x2-1

=
2[(x2-1)-(x1-1)]
(x1-1)(x2-1)
=
2(x2-x1)
(x1-1)(x2-1)

由1≤x1<x2,得x2-x1>0,x1-1>0,x2-1>0,
所以,
2(x2-x1)
(x1-1)(x2-1)
>0
,即f(x1)-f(x2)>0.
所以f(x1)>f(x2).
所以f(x)在(1,+∞)上是减函数.               
(2)解:由(1)得f(x)在(1,+∞)上是减函数,
所以,f(x)在[2,6]上是减函数.
所以,当x=2时,f(x)取得最大值,最大值是2;
当x=6时,f(x)取得最小值,最小值是
2
5
点评:本题考查函数单调性的判定及应用,考查函数最值的求解,当自变量增大时函数值增大,则为增函数;当自变量增大时函数值减小,则为减函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案