精英家教网 > 高中数学 > 题目详情

【题目】选修4-4,极坐标与参数方程

已知在平面直角坐标系中,为坐标原点,曲线为参数),在以平面直角坐标系的原点为极点,轴的正半轴为极轴,取相同单位长度的极坐标系中,直线的极坐标方程为

(1)求曲线的普通方程和直线的直角坐标方程;

(2)直线轴的交点,经过点的直线与曲线交于两点,若,求直线的倾斜角.

【答案】(1)曲线的普通方程为,直线的直角坐标方程为.

(2).

【解析】

(1)对曲线的参数方程两边平方后相加,可求得直角坐标方程.对直线的极坐标方程,展开后直接利用极转直的公式进行转化.(2)设出直线的参数方程,联立直线与曲线的方程得,利用参数的几何意义列出的方程,由此求得直线的斜率,进而求得倾斜角的值.

(1)曲线的普通方程为

直线的直角坐标方程为.

(2)点的坐标为.设直线的参数方程为为参数,为倾斜角),联立直线与曲线的方程得:.

的参数分别为,则

.

且满足,故直线的倾斜解是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1,已知菱形的对角线交于点,点为线段的中点,,将三角形沿线段折起到的位置,,如图2所示.

(Ⅰ)证明:平面 平面

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2021年广东新高考将实行模式,即语文、数学、英语必选,物理、历史二选一,政治、地理、化学、生物四选二,共选六科参加高考.其中偏理方向是二选一时选物理,偏文方向是二选一时选历史,对后四科选择没有限定.

1)小明随机选课,求他选择偏理方向及生物学科的概率;

2)小明、小吴同时随机选课,约定选择偏理方向及生物学科,求他们选课相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为,(θ为参数),以原点为极点,x轴非负半轴为极轴建立极坐标系.

1)求曲线C的极坐标方程;

2)在平面直角坐标系xOy中,A(﹣20),B0,﹣2),M是曲线C上任意一点,求ABM面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,直线不过原点且不平行于坐标轴,有两个交点,线段的中点为.证明:

)直线的斜率与的斜率的乘积为定值.

)若过点,延长线段交于点,当四边形为平行四边形时,则直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将参加夏令营的400名学生编号为:001,002,…,400,采用系统抽样的方法抽取一个容量为40的样本,且随机抽得的号码为003,这400名学生分住在三个营区,从001到180在第一营区,从181到295在第二营区,从296到400在第三营区,三个营区被抽中的人数分别为( )

A. 18,12,10 B. 20,12,8 C. 17,13,10 D. 18,11,11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[2019·朝鲜中学]在如图所示的程序框图中,有这样一个执行框,其中的函数关系式为,程序框图中的为函数的定义域.

(1)若输入,请写出输出的所有的值;

(2)若输出的所有都相等,试求输入的初始值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.

1)若厂家库房中(视为数量足够多)的每件产品合格的概率为 从中任意取出 3件进行检验,求至少有 件是合格品的概率;

2)若厂家发给商家 件产品,其中有不合格,按合同规定 商家从这 件产品中任取件,都进行检验,只有 件都合格时才接收这批产品,否则拒收.求该商家可能检验出的不合格产品的件数ξ的分布列,并求该商家拒收这批产品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】问:是否存在这样的正整数数列,满足,且对每个,均有;而其各项的值恰构成的一个排列?证明你的结论.

查看答案和解析>>

同步练习册答案