【题目】如图1,已知菱形
的对角线
交于点
,点
为线段
的中点,
,
,将三角形
沿线段
折起到
的位置,
,如图2所示.
![]()
(Ⅰ)证明:平面
平面
;
(Ⅱ)求三棱锥
的体积.
【答案】(Ⅰ)见证明;(Ⅱ)![]()
【解析】
(Ⅰ)折叠前,AC⊥DE;,从而折叠后,DE⊥PF,DE⊥CF,由此能证明DE⊥平面PCF.
再由DC∥AE,DC=AE能得到DC∥EB,DC=EB.说明四边形DEBC为平行四边形.可得CB∥DE.由此能证明平面PBC⊥平面PCF.
(Ⅱ)由题意根据勾股定理运算得到
,又由(Ⅰ)的结论得到
,可得
平面
,再利用等体积转化有
,计算结果.
(Ⅰ)折叠前,因为四边形
为菱形,所以
;
所以折叠后,
,
, 又
,
平面
,
所以
平面
因为四边形
为菱形,所以
.
又点
为线段
的中点,所以
.
所以四边形
为平行四边形.
所以
.
又
平面
,所以
平面
.
因为
平面
,所以平面
平面
.
(Ⅱ)图1中,由已知得
,
,![]()
所以图2中,
,又![]()
所以
,所以![]()
又
平面
,所以
![]()
又
,
平面
,
所以
平面
,
所以
.
所以三棱锥
的体积为
.
科目:高中数学 来源: 题型:
【题目】从某市统考的学生数学考试卷中随机抽查100份数学试卷作为样本,分别统计出这些试卷总分,由总分得到如下的频率分别直方图.
![]()
(1)求这100份数学试卷成绩的中位数;
(2)从总分在
和
的试卷中随机抽取2份试卷,求抽取的2份试卷中至少有一份总分少于65分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,为了测量某一隧道两侧A、B两地间的距离,某同学首先选定了不在直线AB上的一点C(
中∠A、∠B、∠C所对的边分别为a、b、c),然后确定测量方案并测出相关数据,进行计算.现给出如下四种测量方案;①测量∠A,∠C,b;②测量∠A,∠B,∠C;③测量a,b,∠C;④测量∠A,∠B,a,则一定能确定A、B间距离的所有方案的序号为( )
![]()
A.①③B.①③④C.②③④D.①②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合
,
是集合
的所有子集组成的集合.若集合
满足对任意的映射
,总存在
,使得
成立,其中,
表示集合
的子集
的补集,
为给定的正整数.试求所有满足上述条件的集合
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】半期考试后,班长小王统计了50名同学的数学成绩,绘制频率分布直方图如图所示.
根据频率分布直方图,估计这50名同学的数学平均成绩;
用分层抽样的方法从成绩低于115的同学中抽取6名,再在抽取的这6名同学中任选2名,求这两名同学数学成绩均在
中的概率.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:
![]()
①若
,则奖励玩具一个;
②若
,则奖励水杯一个;
③其余情况奖励饮料一瓶.
假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.
(Ⅰ)求小亮获得玩具的概率;
(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族
中的成员仅以自驾或公交方式通勤.分析显示:当
中
(
)的成员自驾时,自驾群体的人均通勤时间为
(单位:分钟),而公交群体的人均通勤时间不受
影响,恒为
分钟,试根据上述分析结果回答下列问题:
(1)当
在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(2)求该地上班族
的人均通勤时间
的表达式;讨论
的单调性,并说明其实际意义.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4,极坐标与参数方程
已知在平面直角坐标系
中,
为坐标原点,曲线
(
为参数),在以平面直角坐标系的原点为极点,
轴的正半轴为极轴,取相同单位长度的极坐标系中,直线
的极坐标方程为
.
(1)求曲线
的普通方程和直线
的直角坐标方程;
(2)直线
与
轴的交点
,经过点
的直线
与曲线
交于
两点,若
,求直线
的倾斜角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com