【题目】已知函数
.
(1)求函数
图象经过的定点坐标;
(2)当
时,求曲线
在点
处的切线方程及函数
单调区间;
(3)若对任意
,
恒成立,求实数
的取值范围.
【答案】(1)
(2)见解析(3)
.
【解析】
试题分析:(1)当
时,
,则
,即可求得顶点坐标;(2)当
时,
,对
求导,分别求出
与
,即可得切线方程,再根据导函数的正负,即可求出函数
单调区间;(3)对函数
求导,讨论
和
时,函数
的单调性,进而求出
,即可求出实数
的取值范围.
试题解析:(1)当
时,![]()
∴
,
∴函数
的图象无论
为何值都经过定点
.
(2)当
时,
.
,
,
,
则切线方程为
,即
.
在
时,如果
,
即
时,函数
单调递增;
如果
,
即
时,函数
单调递减.
(3)
,
.
当
时,
,
在
上单调递增.
,
不恒成立.
当
时,设
,
.
∵
的对称轴为
,
,
∴
在
上单调递增,且存在唯一
,
使得
.
∴当
时,
,即
,
在
上单调递减;
∴当
时,
,即
,
在
上单调递增.
∴
在
上的最大值
.
∴
,得
,
解得
.
科目:高中数学 来源: 题型:
【题目】某班级体育课举行了一次“投篮比赛”活动,为了了解本次投篮比赛学生总体情况,从中抽取了甲乙两个小组样本分数的茎叶图如图所示.
5 | 6 | 5 | 8 | ||||||
6 | 0 | 1 | 3 | 6 | 2 | 4 | 6 | 9 | |
7 | 1 | 2 | 7 | 1 | 3 | ||||
8 | 0 | 1 | 8 | 1 | |||||
甲 | 乙 | ||||||||
(1)分别求甲乙两个小组成绩的平均数与方差;
(2)分析比较甲乙两个小组的成绩;
(3)从甲组高于70分的同学中,任意抽取2名同学,求恰好有一名同学的得分在[80,90)的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某射击运动员每次击中目标的概率都是0.7.现采用随机模拟的方法估计该运动员射击4次,至少击中2次的概率:先由计算器算出0~9之间取整数值的随机数,指定0,1,2表示没有击中目标,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:
5727 0293 7140 9857 0347
4373 8636 9647 1417 4698
0371 6233 2616 8045 6011
3661 9597 7424 6710 4281
据此估计,该射击运动员射击4次至少击中2次的概率为( )
A. 0.8 B. 0.85 C. 0.9 D. 0.95
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点P是圆
上一动点,
x轴于点D.记满足
的动点M的轨迹为Γ.
(1)求轨迹Γ的方程;
(2)已知直线
与轨迹Γ交于不同两点A,B,点G是线段AB中点,射线OG交轨迹Γ于点Q,且
.
①证明:![]()
②求△AOB的面积S(λ)的解析式,并计算S(λ)的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面上动点
到点
的距离与到直线
的距离之比为
,记动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)设
是曲线
上的动点,直线
的方程为
.
①设直线
与圆
交于不同两点
,
,求
的取值范围;
②求与动直线
恒相切的定椭圆
的方程;并探究:若
是曲线
:
上的动点,是否存在直线
:
恒相切的定曲线
?若存在,直接写出曲线
的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某机构组织语文、数学学科能力竞赛,按照一定比例淘汰后,颁发一二三等奖.现有某考场的两科考试成绩数据统计如下图所示,其中数学科目成绩为二等奖的考生有
人.
![]()
![]()
(Ⅰ)求该考场考生中语文成绩为一等奖的人数;
(Ⅱ)用随机抽样的方法从获得数学和语文二等奖的学生中各抽取
人,进行综合素质测试,将他们的综合得分绘成茎叶图,求样本的平均数及方差并进行比较分析;
(Ⅲ)已知本考场的所有考生中,恰有
人两科成绩均为一等奖,在至少一科成绩为一等奖的考生中,随机抽取
人进行访谈,求两人两科成绩均为一等奖的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数![]()
(1)判断函数的奇偶性,并加以证明;
(2)用定义证明
在
上是减函数;
(3)函数
在
上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A. 1盏 B. 3盏 C. 5盏 D. 9盏
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com