精英家教网 > 高中数学 > 题目详情

设函数(其中).
(1) 当时,求函数的单调区间;
(2) 当时,求函数上的最大值.

(1) 函数的递减区间为,递增区间为,
(2)

解析试题分析:(1)由,利用导数的符号判断函数的单调性和求单调区间;
(2)
试题解析:
解:(1)当时,
, 
,得, 
变化时,的变化如下表:














单调递增
极大值
单调递减
极小值
单调递增
 
右表可知,函数的递减区间为,递增区间为,.
(2) ,令,得,, 令,则
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若曲线在公共点处有相同的切线,求实数的值;
(Ⅱ)若,求方程在区间内实根的个数(为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 (R).
(1)当时,求函数的极值;
(2)若函数的图象与轴有且只有一个交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数).
(1)若x=3是的极值点,求[1,a]上的最小值和最大值;
(2)若时是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

近年来,某企业每年消耗电费约24万元,为了节能减排,决定安装一个可使用15年的太阳能供电设备接入本企业电网,安装这种供电设备的工本费(单位:万元)与太阳能电池板的面积(单位:平方米)成正比,比例系数约为0.5.为了保证正常用电,安装后采用太阳能和电能互补供电的模式.假设在此模式下,安装后该企业每年消耗的电费(单位:万元)与安装的这种太阳能电池板的面积(单位:平方米)之间的函数关系是为常数).记为该村安装这种太阳能供电设备的费用与该村15年共将消耗的电费之和.
(1)试解释的实际意义,并建立关于的函数关系式;
(2)当为多少平方米时,取得最小值?最小值是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处的切线方程为.
(1)求函数的解析式;
(2)若关于的方程恰有两个不同的实根,求实数的值;
(3)数列满足,求的整数部分.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若时有极值,求实数的值和的极大值;
(2)若在定义域上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=x2+2x+kln x,其中k≠0.
(1)当k>0时,判断f(x)在(0,+∞)上的单调性;
(2)讨论f(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数,其中.
(1)当时,求的单调递增区间;
(2)若在区间上的最小值为8,求的值.

查看答案和解析>>

同步练习册答案