(本小题满分12分)
已知函数,其中.
(1)当时,求的单调递增区间;
(2)若在区间上的最小值为8,求的值.
(1)和,(2)
解析试题分析:(1)利用导数求函数单调区间,首先确定定义域:然后对函数求导,在定义域内求导函数的零点:,当时,,由得或,列表分析得单调增区间:和,(2)已知函数最值,求参数,解题思路还是从求最值出发.由(1)知,,所以导函数的零点为或,列表分析可得:函数增区间为和,减区间为.由于所以,当时,,(舍),当时,由于所以且解得或(舍),当时,在上单调递减,满足题意,综上.
科目:高中数学
来源:
题型:解答题
已知函数。
科目:高中数学
来源:
题型:解答题
已知函数
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
试题解析:(1)定义域:而 ,当时,,由得或,列表:
(1)求函数在区间上的值域;
(2)是否存在实数a,对任意给定的,在区间上都存在两个不同的,使得成立.若存在,求出a的取值范围;若不存在,请说明理由.
(1)若,求证:函数在(1,+∞)上是增函数;
(2)当时,求函数在[1,e]上的最小值及相应的x值;
(3)若存在[l,e],使得成立,求实数的取值范围.
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号