精英家教网 > 高中数学 > 题目详情

已知函数.
(1当 时, 与)在定义域上单调性相反,求的 的最小值。
(2)当时,求证:存在,使的三个不同的实数解,且对任意都有.

(1) 1,(2)详见解析.

解析试题分析:(1)利用导数求函数单调性,注意考虑函数定义域. 两个函数的单调性可以从可以确定的函数入手.因为时,;当时,恒成立,所以,恒成立,所以,上为增函数。根据在定义域上单调性相反得,上为减函数,所以恒成立,即:,所以因为,当且仅当时,取最大值.所以,此时的最小值是,-(2)运用函数与方程思想,方程有三个不同的解,实质就是函数有三个不同的交点 ,由图像可知在极大值与极小值之间. 证明不等式,需从结构出发,利用条件消去a,b,将其转化为一元函数:,从而根据函数单调性,证明不等式.
解析:(1)因为        2分。
时,;当时,恒成立,
所以,恒成立,所以,上为增函数。
根据在定义域上单调性相反得,上为减函数,所以恒成立,即:,所以因为,当且仅当时,取最大值.所以,此时的最小值是,      6分
(2)因为时,,且一元二次方程,所以有两个不相等的实根     8分
时,为增函数;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数处的切线方程为.
(1)求函数的解析式;
(2)若关于的方程恰有两个不同的实根,求实数的值;
(3)数列满足,求的整数部分.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是二次函数,方程有两个相等的实数根,且
(1)求的表达式;
(2)若直线的图象与两坐标轴围成的图形面积二等分,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(1)若处有极值,求a;
(2)若上为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数,其中.
(1)当时,求的单调递增区间;
(2)若在区间上的最小值为8,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中,且曲线在点处的切线垂直于.
(1)求的值;
(2)求函数的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知常数,函数.
(1)讨论在区间上的单调性;
(2)若存在两个极值点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求证:
(2)若恒成立,求的最大值与的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2-alnx(a∈R).
(1)若函数f(x)的图象在x=2处的切线方程为y=x+b,求a,b的值;
(2)若函数f(x)在(1,+∞)上为增函数,求a的取值范围.

查看答案和解析>>

同步练习册答案