【题目】如图,已知圆
,点
是圆
内一个定点,点
是圆上任意一点,线段
的垂直平分线
和半径
相交于点
.当点
在圆上运动时,点
的轨迹为椭圆
.
![]()
![]()
(1)
分别为椭圆
的左右焦点,
为椭圆上任意一点,若
,求
的面积;
(2)如图,若椭圆
,椭圆
(
,且
),则称椭圆
是椭圆
的
倍相似椭圆.已知
是椭圆
的
倍相似椭圆,若椭圆
的任意一条切线
交椭圆
于两点
、
,试求弦长
的取值范围.
【答案】(1)
;(2)
.
【解析】
(1)根据线段中垂线的性质,可求出
的方程为
,由椭圆的定义可知
,结合已知条件可求出
,又
,结合余弦定理以及同角三角函数的基本关系可求出
,进而可求出三角形的面积.
(2)当切线斜率不存在时,可求出
;若斜率存在,设方程为
,与
联立可知
,即
;与
联立,结合韦达定理、弦长公式可求出
,从而可求出弦长
的取值范围.
(1)解:由题意知,圆心
,半径
,且
,
设椭圆的方程为
,焦点坐标为
,由椭圆的定义可知,
,
解得
,所以
,所以
的方程为
.
因为
为椭圆上任意一点,所以
,由
,可知
,又因为
,由余弦定理知,
,所以
,
则
的面积为
.
(2)由(1)知,
的方程为
,即
.设
.
①若切线垂直于
轴,其方程为
,不妨设为
,则
,解得
,
所以此时,
;同理对于切线为
时,求出
.
②若切线不垂直于
轴,设其方程为
,
,整理得
,则
,即
(
);
切线与
联立得
,整理得
,
所以
,则
.
因为
,所以
,从而
.
综上所述,
的取值范围为
.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,PA⊥平面ABCD,在四边形ABCD中,∠ABC=
,AB=4,BC=3,CD=
,AD=2
,PA=4.
![]()
(1)证明:CD⊥平面PAD;
(2)求二面角B-PC-D的余弦值..
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以原点
为极点,以x轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的极坐标方程与曲线
的直角坐标方程;
(2)设
、
为曲线
上位于第一,二象限的两个动点,且
,射线
,
交曲线
分别于点
,
.求
面积的最小值,并求此时四边形
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,动圆
与圆
外切,且与直线
相切,该动圆圆心
的轨迹为曲线
.
(1)求曲线
的方程
(2)过点
的直线与抛物线相交于
两点,抛物线在点A的切线与
交于点N,求
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,斜率为
的直线交抛物线
于
两点,已知点
的横坐标比点
的横坐标大4,直线
交线段
于点
,交抛物线于点
.
![]()
(1)若点
的横坐标等于0,求
的值;
(2)求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】矩形
中,
,
,点
,
分别是
,
上的动点,将矩形
沿
所在的直线进行随意翻折,在翻折过程中直线
与直线
所成角的范围(包含初始状态)为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,椭圆
的左、右顶点分别为A、B,右焦点为F,且点F满足
,由椭圆C的四个顶点围成的四边形面积为
.过点
的直线TA,TB与此椭圆分别交于点
,
,其中
,
,
.
(1)求椭圆C的标准方程;
(2)当T在直线
时,直线MN是否过x轴上的一定点?若是,求出该定点的坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在等比数列
中,已知
设数列
的前n项和为
,且![]()
(1)求数列
通项公式;
(2)证明:数列
是等差数列;
(3)是否存在等差数列
,使得对任意
,都有
?若存在,求出所有符合题意的等差数列
;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com