精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,动点M到直线x=-1的距离等于它到圆F:(x-2)2+y2=1的点的最小距离.
(1)求点M的轨迹方程;
(2)已知过点F的直线与点M的轨迹交于A,B两点,且|AF|=8,求|BF|的长.
(1)设动点M(x,y),则
∵动点M到直线x=-1的距离等于它到圆F:(x-2)2+y2=1的点的最小距离
∴|x+1|=
(x-2)2+(y-0)2-1
,…(3分)
化简得:6x-2+2|x+1|=y2
当x≥-1时,y2=8x;…(5分)
当x<-1时,y2=4x-4<-8,不合题意.
所以点M的轨迹方程为:y2=8x.…(7分)
(2)抛物线的准线方程为x=-2.
过点A作准线的垂线AM,垂足为M,AM交y轴于点E,过点A作x轴垂线,垂足为H.
过点B作准线的垂线BN,垂足为N,
由抛物线的定义知:AF=AM=8.
因为ME=OF=2,所以AE=6,FH=4.
在Rt△AHF中,AF=8,FH=4,所以∠AFH=60°.…(10分)
直线AB的方程为y=
3
(x-2)代入y2=8x,可得
3x2-20x+12=0
∴x=6,或x=
2
3

∴A(6,4
3
),B(
2
3
-
4
3
3
).
∴BF=BN=
2
3
+2=
8
3
.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知椭圆,它的离心率为,直线与以原点为圆心,以椭圆的短半轴长为半径的圆相切.⑴求椭圆的方程;⑵设椭圆的左焦点为,左准线为,动直线垂直于直线,垂足为点,线段的垂直平分线交于点,求动点的轨迹的方程;⑶将曲线向右平移2个单位得到曲线,设曲线的准线为,焦点为,过作直线交曲线两点,过点作平行于曲线的对称轴的直线,若,试证明三点为坐标原点)在同一条直线上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线,直线两点,是线段的中点,过轴的垂线交于点.(1)证明:抛物线在点处的切线与平行;(2)是否存在实数使NANB,若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,点满足,记点的轨迹为.
(Ⅰ)求轨迹的方程;(Ⅱ)若直线过点且与轨迹交于两点. (i)设点,问:是否存在实数,使得直线绕点无论怎样转动,都有成立?若存在,求出实数的值;若不存在,请说明理由.(ii)过作直线的垂线,垂足分别为,记
,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,动点P到两点(-
3
,0),(
3
,0)的距离之和等于4,设点P的轨迹为曲线C,直线l过点E(-1,0)且与曲线C交于A,B两点.
(1)求曲线C的轨迹方程;
(2)若AB中点横坐标为-
1
2
,求直线AB的方程;
(3)是否存在△AOB面积的最大值,若存在,求出△AOB的面积;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点(1,1)是椭圆
x2
4
+
y2
2
=1
某条弦的中点,则此弦所在的直线方程为:______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C:x2-y2=1,l:y=kx+1
(1)求直线L的斜率的取值范围,使L与C分别有一个交点,两个交点,没有交点.
(2)若Q(1,1),试判断以Q为中点的弦是否存在,若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,线段AB的两个端点A、B分别分别在x轴、y轴上滑动,|AB|=5,点M是AB上一点,且|AM|=2,点M随线段AB的运动而变化.
(1)求点M的轨迹方程;
(2)设F1为点M的轨迹的左焦点,F2为右焦点,过F1的直线交M的轨迹于P,Q两点,求S△PQF2的最大值,并求此时直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线的焦点与椭圆的右焦点重合,则的值为( )
A.B.2 C.D.4

查看答案和解析>>

同步练习册答案