精英家教网 > 高中数学 > 题目详情
已知,点满足,记点的轨迹为.
(Ⅰ)求轨迹的方程;(Ⅱ)若直线过点且与轨迹交于两点. (i)设点,问:是否存在实数,使得直线绕点无论怎样转动,都有成立?若存在,求出实数的值;若不存在,请说明理由.(ii)过作直线的垂线,垂足分别为,记
,求的取值范围.
(Ⅰ)
(Ⅰ)由知,点的轨迹是以为焦点的双曲线右支,由,∴,故轨迹E的方程为…………3分
(Ⅱ)当直线l的斜率存在时,设直线l方程为,与双曲线方程联立消,设
,   解得 ……………5分


 
(i)∵

   
……………………7分
假设存在实数,使得
故得对任意的恒成立,
,解得   ∴当时,.
当直线l的斜率不存在时,由知结论也成立,
综上,存在,使得. …………………………………………8分
(ii)∵,∴直线是双曲线的右准线,…………………………9分
由双曲线定义得:
方法一:∴
 …………………………………………10分
,∴,∴………………………………………11分
注意到直线的斜率不存在时,,综上, …………………12分


 
   方法二:设直线的倾斜角为,由于直线

与双曲线右支有二个交点,∴,过
,垂足为,则,          
 …(10分)
,得 故: …(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

双曲线中心在原点,坐标轴为对称轴,与圆x2+y2=17交于A(4,-1).若圆在点A的切线与双曲线的一条渐近线平行,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)平面直角坐标系中,为坐标原点,给定两点,点满足   ,其中,且.  (1)求点的轨迹方程;(2)设点的轨迹与双曲线交于两点,且以为直径的圆过原点,求证:为定值;(3)在(2)的条件下,若双曲线的离心率不大于,求双曲线实轴长的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)
已知曲线C上的动点满足到点的距离比到直线的距离小1.
求曲线C的方程;过点F的直线l与曲线C交于A、B两点.(ⅰ)过A、B两点分别作抛物线的切线,设其交点为M,证明;(ⅱ)是否在y轴上存在定点Q,使得无论AB怎样运动,都有?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若动点()在曲线上变化,则的最大值为(   )
A.B.C.D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在面积为18的△ABC中,AB=5,双曲线E过点A,


 
且以B、C为焦点,已知

(Ⅰ)建立适当的坐标系,求双曲线E的方程;
(Ⅱ)是否存在过点D(1,1)的直线l
使l与双曲线E交于不同的两点M、N,且
如果存在,求出直线l的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.
已知双曲线设过点的直线l的方向向量
(1)      当直线l与双曲线C的一条渐近线m平行时,求直线l的方程及l与m的距离;
(2)      证明:当>时,在双曲线C的右支上不存在点Q,使之到直线l的距离为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,动点M到直线x=-1的距离等于它到圆F:(x-2)2+y2=1的点的最小距离.
(1)求点M的轨迹方程;
(2)已知过点F的直线与点M的轨迹交于A,B两点,且|AF|=8,求|BF|的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知抛物线C:y2=2px和⊙M:(x-4)2+y2=1,过抛物线C上一点H(x0,y0)作两条直线与⊙M相切于A、B两点,分别交抛物线为E、F两点,圆心点M到抛物线准线的距离为
17
4

(1)求抛物线C的方程;
(2)当∠AHB的角平分线垂直x轴时,求直线EF的斜率.

查看答案和解析>>

同步练习册答案