【题目】某商品最近30天的价格f(t)(元)与时间t满足关系式:f(t)= ,且知销售量g(t)与时间t满足关系式 g(t)=﹣t+30,(0≤t≤30,t∈N+),求该商品的日销售额的最大值.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.现已画出函数f(x)在y轴左侧的图象,如图所示,并根据
(1)写出函数f(x)(x∈R)的增区间;
(2)写出函数f(x)(x∈R)的解析式;
(3)若函数g(x)=f(x)﹣2ax+2(x∈[1,2]),求函数g(x)的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
已知函数, .
(1)求函数的单调区间;
(2)当时,过原点分别作曲线与的切线, ,已知两切线的斜率互为倒数,证明: ;
(3)设,当, 时,求实数的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数g(x)=mx2﹣2mx+n+1(m>0)在区间[0,3]上有最大值4,最小值0.
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)设f(x)= .若f(2x)﹣k2x≤0在x∈[﹣3,3]时恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)如图所示,一根水平放置的长方体枕木的安全负荷与它的厚度d的平方和宽度a的乘积成正比,同时与它的长度的平方成反比.
(1)在a>d>0的条件下,将此枕木翻转90°(即宽度变为了厚度),枕木的安全负荷会发生变化吗?变大还是变小?
(2)现有一根横截面为半圆(半圆的半径为R=)的柱形木材,用它截取成横截面为长方形的枕木,其长度即为枕木规定的长度l,问横截面如何截取,可使安全负荷最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若不等式(m﹣1)x2+(m﹣1)x+2>0的解集是R,则m的范围是( )
A.(1,9)
B.(﹣∞,1]∪(9,+∞)
C.[1,9)
D.(﹣∞,1)∪(9,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列{an}前n项和为Sn , 已知(a2﹣2)3+2013(a2﹣2)=sin ,(a2013﹣2)3+2013(a2013﹣2)=cos ,则S2014= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=ax2+bx+c.
(1)若a>b>c,且f(1)=0,证明f(x)的图象与x轴有2个交点;
(2)在(1)的条件下,是否存在m∈R,使得f(m)=﹣a成立时,f(m+3)为正数,若存在,证明你的结论,若不存在,请说明理由;
(3)若对x1 , x2∈R,且x1<x2 , f(x1)≠f(x2),方程f(x)= [f(x1)+f(x2)]有两个不等实根,证明必有一个根属于(x1 , x2).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com