精英家教网 > 高中数学 > 题目详情
16.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥-1}\\{2x-y≤1}\\{y≤1}\end{array}\right.$,则z=3x-y的最小值为-7.

分析 由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.

解答 解:x,y满足约束条件$\left\{\begin{array}{l}{x+y≥-1}\\{2x-y≤1}\\{y≤1}\end{array}\right.$对应的平面区域如图:

当直线y=3x-z经过C时使得z最小,解$\left\{\begin{array}{l}{x+y=-1}\\{y=1}\end{array}\right.$得$\left\{\begin{array}{l}{x=-2}\\{y=1}\end{array}\right.$,所以C(-2,1),
所以z=3x-y的最小值为-2×3-1=-7;
故答案为:-7.

点评 本题考查了简单的线性规划,关键是正确画出平面区域,利用z的几何意义求最值;考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.定义:对于函数f(x),若在定义域内存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数”.
(1)已知二次函数f(x)=ax2+2x-4a(a∈R),试判断f(x)是否为定义域R上的“局部奇函数”?若是,求出满足f(-x)=-f(x)的x的值;若不是,请说明理由;
(2)若f(x)=2x+m是定义在区间[-1,1]上的“局部奇函数”,求实数m的取值范围.
(3)若f(x)=4x-m•2x+1+m2-3为定义域R上的“局部奇函数”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足,a1=a,n2Sn+1=n2(Sn+an)+an2,n∈N*
(1)若{an}为不恒为0的等差数列,求a;
(2)若a=$\frac{1}{3}$,证明:$\frac{n}{2n+1}≤{a_n}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等差数列{an}的公差为-2,且a2,a4,a5成等比数列,则a2等于(  )
A.-4B.-6C.-8D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知x,y满足$\left\{\begin{array}{l}x≥1\\ x+y≤5\\ ax+by+c≤0\end{array}\right.$,记目标函数Z=2x+y的最大值为7,最小值为1,则a:b:c的值是2:(-3):(-5).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列求导运算正确的是(  )
A.($\frac{1}{x}$)′=$\frac{1}{{x}^{2}}$B.(log2x)′=$\frac{1}{xln2}$C.(cosx)′=sinxD.(x2+1)′=2x+4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是两个不共线向量,若向量$\overrightarrow a=2\overrightarrow{e_1}-3\overrightarrow{e_2}$与向量$\overrightarrow b=3\overrightarrow{e_1}+λ\overrightarrow{e_2}$共线,则λ的值为(  )
A.$\frac{2}{3}$B.-2C.$-\frac{9}{2}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数${f_1}(x)=x\;,{f_2}(x)={log_{2016}}x\;,{a_i}=\frac{i}{2016}\;(\;i=1,\;\;\;2,\;\;\;…2016\;)$,记Ik=|fk(a2)-fk(a1)|+|fk(a3)-fk(a2)|+…+|fk(a2016)-fk(a2015)|,k=1,2,则(  )
A.I1<I2B.I1>I2
C.I1=I2D.I1,I2大小关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)a>0,b>0,若$\sqrt{3}$为3a与3b的等比中项,求$\frac{1}{a}+\frac{1}{b}$的最小值;
(2)已知x>2,求f(x)=$\frac{1}{x-2}$+x的值域.

查看答案和解析>>

同步练习册答案