精英家教网 > 高中数学 > 题目详情
11.已知x,y满足$\left\{\begin{array}{l}x≥1\\ x+y≤5\\ ax+by+c≤0\end{array}\right.$,记目标函数Z=2x+y的最大值为7,最小值为1,则a:b:c的值是2:(-3):(-5).

分析 先根据约束条件画出可行域,再利用几何意义求最值,z=2x+y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大最小值时所在的顶点即可

解答 解:由题意得:
目标函数Z=2x+y在点B取得最大值为7,
在点A处取得最小值为1,
∴A(1,-1),B(4,1),
∴直线AB的方程是:2x-3y-5=0,
所以a:b:c=2:(-3):(-5);
故答案为:2:(-3):(-5).

点评 本题主要考查了简单的线性规划,以及利用几何意义求最值的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ<\frac{π}{2})$的部分图象如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)在区间$[-\frac{π}{4},\frac{π}{3}]$上的值域;
(Ⅲ)求函数g(x)=f(x-$\frac{π}{12}$)-f(x+$\frac{π}{12}$)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.己知a=cos46°cos14°-sin46°sin14°,b=$\frac{1+tan35°}{1-tan35°}$,lnc=4-c2则a,b,c的大小关系为(  )
A.a<b<cB.b<c<aC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在锐角△ABC中,角A、B、C所对的边分别是a、b、c,O为△ABC的外心.
(1)若b=2,求$\overrightarrow{AC}•\overrightarrow{AO}$的值;
(2)已知${S_{△ABC}}=\frac{3}{2}\sqrt{3}$,b=2,c=3,求$\overrightarrow{OB}•\overrightarrow{OC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=-xex
(1)求f(x)的单调区间,并判断它在各区间上是增函数还是减函数;
(2)求f(x)在[-2,0]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥-1}\\{2x-y≤1}\\{y≤1}\end{array}\right.$,则z=3x-y的最小值为-7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{1}{3}$x3+$\frac{4}{3}$.求函数f(x)在点P(2,4)处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某厂生产甲产品每吨需用原料A和原料B分别为2吨和3吨,生产乙产品每吨需用原料A和原料B分别为2吨和1吨.甲、乙产品每吨可获利润分别为3千元和2千元.现有12吨原料A,8吨原料B.问计划生产甲产品和乙产品各多少吨才能使利润总额达到最大.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.一元二次不等式(x-2)(x-3)<0的解集为{x|2<x<3}.

查看答案和解析>>

同步练习册答案