精英家教网 > 高中数学 > 题目详情
7.已知数列{an}满足,a1=a,n2Sn+1=n2(Sn+an)+an2,n∈N*
(1)若{an}为不恒为0的等差数列,求a;
(2)若a=$\frac{1}{3}$,证明:$\frac{n}{2n+1}≤{a_n}$<1.

分析 (1)通过对n2Sn+1=n2(Sn+an)+an2变形、整理可知an+1=an+$\frac{{{a}_{n}}^{2}}{{n}^{2}}$,利用an=kn+b,计算即得结论;
(2)利用an+1>an、放缩可知$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$>-$\frac{1}{{n}^{2}}$,通过叠加可知$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{1}}$>-[$\frac{1}{{n}^{2}}$+$\frac{1}{(n-1)^{2}}$+…+$\frac{1}{{1}^{2}}$],利用$\frac{1}{{n}^{2}}$<$\frac{1}{n-1}$-$\frac{1}{n}$、并项相加可知an<1;利用an<1放缩可知an+1<an+$\frac{{a}_{n}}{{n}^{2}}$,进而$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$<-$\frac{1}{{n}^{2}+1}$,通过叠加可知$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{1}}$<-[$\frac{1}{(n-1)^{2}+1}$+…+$\frac{1}{{1}^{2}+1}$],利用$\frac{1}{{n}^{2}+1}$>$\frac{1}{n}$-$\frac{1}{n+1}$、并项相加可知an≥$\frac{n}{2n+1}$.

解答 (1)解:∵数列{an}为不恒为0的等差数列,
∴可设an=kn+b,
∵n2Sn+1=n2(Sn+an)+an2
∴n2(Sn+1-Sn)=n2an+an2
∴n2an+1=n2an+an2
∴an+1=an+$\frac{{{a}_{n}}^{2}}{{n}^{2}}$,
∴k(n+1)+b=kn+b+$\frac{(kn+b)^{2}}{{n}^{2}}$,
整理得:kn2=k2n2+2kbn+b2
∴$\left\{\begin{array}{l}{k={k}^{2}}\\{b=0}\end{array}\right.$,
解得:k=1、b=0或k=0、b=0(舍),
∴an=n,
∴a1=a=1;
(2)证明:下面分两部分来证明命题:
①证明:an<1.
易知an>0,an+1-an=$\frac{{{a}_{n}}^{2}}{{n}^{2}}$>0,
∴an+1>an
∴an+1=an+$\frac{{{a}_{n}}^{2}}{{n}^{2}}$<an+$\frac{{a}_{n}{a}_{n+1}}{{n}^{2}}$,
两端同时除以anan+1,得:$\frac{1}{{a}_{n}}$<$\frac{1}{{a}_{n+1}}$+$\frac{1}{{n}^{2}}$,
∴$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$>-$\frac{1}{{n}^{2}}$,
∴$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n-1}}$>-$\frac{1}{(n-1)^{2}}$,

$\frac{1}{{a}_{2}}$-$\frac{1}{{a}_{1}}$>-$\frac{1}{{1}^{2}}$,
叠加得:$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{1}}$>-[$\frac{1}{{n}^{2}}$+$\frac{1}{(n-1)^{2}}$+…+$\frac{1}{{1}^{2}}$],
又∵$\frac{1}{{n}^{2}}$<$\frac{1}{n(n-1)}$=$\frac{1}{n-1}$-$\frac{1}{n}$,
∴$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{1}}$>-[$\frac{1}{{n}^{2}}$+$\frac{1}{(n-1)^{2}}$+…+$\frac{1}{{1}^{2}}$]>-($\frac{1}{n-1}$-$\frac{1}{n}$+$\frac{1}{n-2}$-$\frac{1}{n-1}$+…+$\frac{1}{1}$-$\frac{1}{2}$+$\frac{1}{{1}^{2}}$)=-(2-$\frac{1}{n-1}$)=$\frac{1}{n-1}$-2,
又∵a1=a=$\frac{1}{3}$,
∴$\frac{1}{{a}_{n}}$-3>$\frac{1}{n-1}$-2,
∴$\frac{1}{{a}_{n}}$>$\frac{1}{n-1}$-2+3=1+$\frac{1}{n-1}$>1,
∴an<1;
②证明:an≥$\frac{n}{2n+1}$.
显然a1=$\frac{1}{3}$≥$\frac{1}{2+1}$,
∵an<1,
∴an+1=an+$\frac{{{a}_{n}}^{2}}{{n}^{2}}$<an+$\frac{{a}_{n}}{{n}^{2}}$,
∴an>$\frac{{n}^{2}}{{n}^{2}+1}$•an+1
∴an+1=an+$\frac{{{a}_{n}}^{2}}{{n}^{2}}$
=an+$\frac{{a}_{n}}{{n}^{2}}$•an
>an+$\frac{{a}_{n}}{{n}^{2}}$•$\frac{{n}^{2}}{{n}^{2}+1}$•an+1
=an+$\frac{1}{{n}^{2}+1}$•an•an+1
两端同时除以anan+1,得:$\frac{1}{{a}_{n}}$>$\frac{1}{{a}_{n+1}}$+$\frac{1}{{n}^{2}+1}$,
∴$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$<-$\frac{1}{{n}^{2}+1}$,
∴$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n-1}}$<-$\frac{1}{(n-1)^{2}+1}$,

$\frac{1}{{a}_{2}}$-$\frac{1}{{a}_{1}}$<-$\frac{1}{{1}^{2}+1}$,
叠加得:$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{1}}$<-[$\frac{1}{(n-1)^{2}+1}$+…+$\frac{1}{{1}^{2}+1}$],
又∵$\frac{1}{{n}^{2}+1}$>$\frac{1}{{n}^{2}+n}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{1}}$<-[$\frac{1}{{n}^{2}+1}$+$\frac{1}{(n-1)^{2}+1}$+…+$\frac{1}{{1}^{2}+1}$]
<-($\frac{1}{n-1}$-$\frac{1}{n}$+…+1-$\frac{1}{2}$)
=-(1-$\frac{1}{n}$),
∴$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{1}}$=$\frac{1}{{a}_{n}}$-3<-(1-$\frac{1}{n}$),
∴$\frac{1}{{a}_{n}}$<3-1+$\frac{1}{n}$=$\frac{2n+1}{n}$,
∴an≥$\frac{n}{2n+1}$;
综上所述:$\frac{n}{2n+1}≤{a_n}$<1.

点评 本题是一道关于数列递推关系的综合题,考查运算求解能力,利用放缩法和裂项是解决本题的关键,难度较大,注意解题方法的积累,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.函数f(x)的导函数为f′(x)且2f(x)<xf′(x)<3f(x)对x∈(0,+∞)恒成立,若0<a<b,则(  )
A.b2f(a)<a2f(b),b3f(a)>a3f(b)B.b2f(a)>a2f(b),b3f(a)<a3f(b)
C.b2f(a)>a2f(b),b3f(a)>a3f(b)D.b2f(a)<a2f(b),b3f(a)<a3f(b)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.曲线y=2x3-3x+1在点(1,0)处的切线方程为(  )
A.y=4x-5B.y=-3x+2C.y=-4x+4D.y=3x-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.复数a+bi与m+ni的积是实数的充要条件是(  )
A.am+bn=0B.an+bm=0C.am=bnD.ab=mn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.己知a=cos46°cos14°-sin46°sin14°,b=$\frac{1+tan35°}{1-tan35°}$,lnc=4-c2则a,b,c的大小关系为(  )
A.a<b<cB.b<c<aC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.因发生意外交通事故,一辆货车上的某种液体泄漏到一渔塘中.为了治污,根据环保部门的建议,现决定在渔塘中投放一种可与污染液体发生化学反应的药剂.已知每投放a(1≤a≤4,且a∈R)个单位的药剂,它在水中释放的浓度y(克/升)随着时间x(天)变化的函数关系式近似为y=a•f(x),其中f(x)=$\left\{\begin{array}{l}{\frac{16}{8-x}-1(0≤x≤4)}\\{5-\frac{1}{2}(4<x≤10)}\end{array}\right.$.若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.
(Ⅰ)若一次投放4个单位的药剂,则有效治污时间可达几天?
(Ⅱ)若第一次投放2个单位的药剂,6天后再投放a个单位的药剂,要使接下来的4天中能够持续有效治污,试求a的最小值(精确到0.1,参考数据:$\sqrt{2}$取1.4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在锐角△ABC中,角A、B、C所对的边分别是a、b、c,O为△ABC的外心.
(1)若b=2,求$\overrightarrow{AC}•\overrightarrow{AO}$的值;
(2)已知${S_{△ABC}}=\frac{3}{2}\sqrt{3}$,b=2,c=3,求$\overrightarrow{OB}•\overrightarrow{OC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥-1}\\{2x-y≤1}\\{y≤1}\end{array}\right.$,则z=3x-y的最小值为-7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.等差数列{an}中,a5+a8+a11+a14=20,则a2+a17的值为(  )
A.21B.19C.10D.20

查看答案和解析>>

同步练习册答案