精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn,对任意n∈N*,满足(1-r)Sn=1-an+1,(r>0),a1=1,
(1)求证:数列{an}是等比数列;
(2)设bn=a2n-1+a2n,Sn=b1+b2+…+bn,求
lim
n→∞
1
Sn
(1)因为数列{an}的前n项和Sn,对任意n∈N*,满足(1-r)Sn=1-an+1,(r>0),a1=1,
所以(1-r)Sn-1=1-an,所以(1-r)an=-an+1+an
所以
an+1
an
=r

所以数列{an}是以1为首项以r为公比的等比数列.
(2)由(1)可知,an=rn-1
又bn=a2n-1+a2n,
Sn=b1+b2+…+bn=a1+a2+a3+a4+…+a2n-1+a2n=
2n    r=1
1-r2n
1-r
     r≠1

当1>r>0时,
lim
n→∞
1
Sn
=
lim
n→+∞
1-r
1-r2n
=1-r.
当r=1时
lim
n→∞
1
Sn
=
lim
n→∞
1
2n
=0;
当r>1时,
lim
n→∞
1
Sn
=
lim
n→+∞
1-r
1-r2n
=0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案