【题目】椭圆的左、右焦点分别是,,离心率为,过且垂直于轴的直线被椭圆截得的线段长为1.
(1)求椭圆的方程;
(2)点是椭圆上除长轴端点外的任一点,连接,,设的角平分线交的长轴于点,求的取值范围;
(3)在(2)的条件下,过点作斜率为的直线,使得与椭圆有且只有一个公共点,设直线,的斜率分别为,,若,证明为定值,并求出这个定值.
【答案】(1);(2);(3)见解析,定值为.
【解析】
(1)将代入椭圆方程可得,从而可得,再结合及,即可求椭圆的方程;
(2)设,分别求出直线,的方程,利用角平分线的性质:角平分线上任一点到角两边的距离相等,列出关于方程,结合消去,将用表示,利用的有界性即可求出的范围;
(3)将直线方程与椭圆的方程联立,消去,得到关于的一元二次方程,因与椭圆有且只有一个公共点,故由,可求出,再利用斜率公式求出,即可求出定值.
(1)由于,将代入椭圆方程,得.
由题意知,即.
又,,所以,.
所以椭圆的方程为.
(2)设,又,,所以直线,的方程分别为
,.
由题意知.
由于点在椭圆上,所以.
所以.
因为,,可得,
所以,因此.
(3)设,则直线的方程为.
联立得,
整理得.
由题意,即.
又,所以,故.
由(2)知,
所以,
因此为定值,这个定值为.
科目:高中数学 来源: 题型:
【题目】已知数列是各项均为正数的等差数列,其中,且成等比数列;数列的前项和为,满足.
(1)求数列、的通项公式;
(2)如果,设数列的前项和为,是否存在正整数,使得成立,若存在,求出的最小值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是定义在上的奇函数,当时,.则下列结论正确的是( ).
A.当时,
B.函数有五个零点
C.若关于的方程有解,则实数的取值范围是
D.对,恒成立
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,平面,,四边形满足且,点为的中点,点为边上的动点,且.
(1)求证:平面平面;
(2)是否存在实数,使得二面角的余弦值为?若存在,试求出实数的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,第行的所有数字之和为,若去除所有为1的项,依次构成数列,则此数列的前55项和为( )
A. 4072B. 2026C. 4096D. 2048
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知p:x2-(3+a)x+3a<0,其中a<3;q:x2+4x-5>0.
(1)若p是q的必要不充分条件,求实数a的取值范围;
(2)若p是q的充分不必要条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某社区为了解居民参加体育锻炼情况,随机抽取18名男性居民,12名女性居民对他们参加体育锻炼的情况进行问卷调查.现按参加体育锻炼的情况将居民分成3类:甲类(不参加体育锻炼),乙类(参加体育锻炼,但平均每周参加体育锻炼的时间不超过5个小时),丙类(参加体育锻炼,且平均每周参加体育锻炼的时间超过5个小时),调查结果如下表:
(1)根据表中的统计数据,完成下面列联表,并判断是否有的把握认为参加体育锻炼与性别有关?
(2)从抽出的女性居民中再随机抽取3人进一步了解情况,记为抽取的这3名女性居民中甲类和丙类人数差的绝对值,求的数学期望.
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[2019·吉林期末]一个袋中装有6个大小形状完全相同的球,球的编号分别为1,2,3,4,5,6.
(1)从袋中随机抽取两个球,求取出的球的编号之和为6的概率;
(2)先后有放回地随机抽取两个球,两次取的球的编号分别记为和,求的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com