精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=a${\;}^{1+\sqrt{1-{x}^{2}}}$+b(a>0且a≠1)最大值为4,最小值为2,求实数a与b的值.

分析 通过题意易知1+$\sqrt{1-{x}^{2}}$∈[1,2],分0<a<1、a>1两种情况讨论即可.

解答 解:依题意可知$\sqrt{1-{x}^{2}}$∈[0,1],
∴1+$\sqrt{1-{x}^{2}}$∈[1,2],
①当0<a<1时,y=ax为减函数,
∴$\left\{\begin{array}{l}{a+b=4}\\{{a}^{2}+b=2}\end{array}\right.$,显然无解;
②当a>1时,y=ax为增函数,
∴$\left\{\begin{array}{l}{a+b=2}\\{{a}^{2}+b=4}\end{array}\right.$,
两式相减得:a2-a-2=0,
∴(a-2)(a+1)=0,
解得:a=2或a=-1(舍),
∴b=2-a=2-2=0;
综上所述,a=2,b=0.

点评 本题考查函数的单调性,考查分类讨论的思想,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设0<x1<x2,a=$\frac{ln(1+{x}_{1})}{{x}_{1}}$,b=$\frac{ln(1+{x}_{2})}{{x}_{2}}$,则a、b的大小关系为a>b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知a>0,函数f(x)=4acos(3x-$\frac{π}{6}$)-a+2b,当x∈[-$\frac{π}{6}$,$\frac{π}{6}$]时,3≤f(x)≤7.
(1)求f(x)的解析式;
(2)求f(x)取最小值时自变量取值构成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求下列各式的值:
(1)121${\;}^{\frac{1}{2}}$;
(2)($\frac{64}{49}$)${\;}^{-\frac{1}{2}}$;
(3)10000${\;}^{-\frac{3}{4}}$;
(4)($\frac{125}{27}$)${\;}^{-\frac{2}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,角α终边上一点P的坐标是(3,4),将OP绕原点旋转45°到OP′的位置.试求点P′的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=xlnx.
(1)求函数f(x)在点M(e,f(e))处的切线方程;
(2)设F(x)=ax2-(a+2)x+f′(x)(a>0),讨论函数F(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.画出函数f(x)=|x+1|-2的图象.
(1)求f(-1),f(0)的值;
(2)若f(x)=1,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{6co{s}^{4}x+5si{n}^{2}x-4}{cos2x}$,求:函数f(x)的定义域及周期.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=(sinωx+cosωx)2-2cos2ωx+a(ω>0),若f(x)的最小正周期为π,最小值为$\sqrt{2}$.
(1)求ω、a的值;
(2)将y=f(x)的函数图象向右平移$\frac{π}{12}$后得到y=g(x),求g(x)在[-$\frac{π}{3}$,$\frac{π}{2}$]上的单调性.

查看答案和解析>>

同步练习册答案