精英家教网 > 高中数学 > 题目详情
7.若数列{an}的第一项a1=1,且${a_{n+1}}=\frac{a_n}{{1+{a_n}}}$(n=1,2,3,…),则a10=$\frac{1}{10}$.

分析 通过对${a_{n+1}}=\frac{a_n}{{1+{a_n}}}$两边同时取倒数,进而计算可得结论.

解答 解:∵${a_{n+1}}=\frac{a_n}{{1+{a_n}}}$,
∴$\frac{1}{{a}_{n+1}}$=$\frac{1}{{a}_{n}}$+1,
又∵a1=1,$\frac{1}{{a}_{1}}$=1,
∴$\frac{1}{{a}_{n}}$=1+n-1=n,
∴an=$\frac{1}{n}$,
∴a10=$\frac{1}{10}$,
故答案为:$\frac{1}{10}$.

点评 本题考查数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.有6个大小相同的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10,现从中任取4个球,有如下几种变量:①X表示取出的最大号码;②Y表示取出的最小号码;③取出一个黑球记2分,取出一个白球记1分,ξ表示取出的4个球的总得分;④η表示取出的黑球个数,这四种变量中服从超几何分布的是(  )
A.①②B.③④C.①②④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.按下面流程图的程序计算,若开始输入x的值是4,则输出结果x的值是105.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}和{bn}中,数列{an}的前n项和为sn,若点(n,sn)在函数y=-x2+14x的图象上,点(n,bn)在函数y=2x的图象上.设数列{cn}={anbn}.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{cn}的前n项和Tn
(Ⅲ)求数列{cn}的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知{an}是公差不为零的等差数列,其前n项和为Sn,若a2,a7,a22成等比数列,S4=48.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{$\frac{1}{{S}_{n}}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)满足$f(x+1)=\frac{2f(x)}{f(x)+2}$,f(1)=1,(x∈R,x≠-1).
(1)分别计算f(2)、f(3)、f(4)的值,并猜函数f(x)的表达式;(不需要证明)
(2)求集合A={x|f(x)<x}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}中,a1=2,${a_{n+1}}=(1+\frac{1}{n}){a_n}$,则{an}的通项公式为an=2n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知平面内一动点P(x,y)(x≥0)到点F(1,0)的距离与点P到y轴的距离的差等于1,
(1)求动点P的轨迹C的方程;
(2)过点F的直线l与轨迹C相交于不同于坐标原点O的两点A,B,求△OAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.为了解甲、乙两个高三毕业班同学的身体发育情况,从甲、乙两个班中分别抽取20人得到身高的频率分布直方图如下,身高不足160cm的为“发育不良”,否则为“发育良好”.
(Ⅰ)求a及样本数据中甲乙两班身高“发育良好”的人数之和;
(Ⅱ)从身高“发育良好”的人数中按分层抽样的方法抽取5人,再从这5人中任意抽取2人,求至少有一人是甲班学生的概率.

查看答案和解析>>

同步练习册答案