精英家教网 > 高中数学 > 题目详情
函数f(x)=
lg(x+1)
x-2
的定义域为 (  )
A、(-1,+∞)
B、(-∞,2)∪(2,+∞)
C、(-1,2)∪(2,+∞)
D、(2,+∞)
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:根据函数的解析式,列出使解析式有意义的不等式组,求出解集即可.
解答: 解:根据题意,得
x+1>0
x-2≠0

解得x>-1,且x≠2;
∴f(x)的定义域是(-1,2)∪(2,+∞).
故选:C.
点评:本题考查了求函数的定义域的问题,解题时只需根据函数的解析式,列出使解析式有意义的不等式组,求解集即可,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

原点到直线3x+4y+5=0的距离为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二面角α-l-β的大小为60°,异面直线m,n分别与α,β垂直,则m,n所成的角为(  )
A、120°B、90°
C、60°D、30°

查看答案和解析>>

科目:高中数学 来源: 题型:

某运动员投篮命中率为0.6,他重复投篮5次,若他命中一次得10分,没命中不得分,命中次数为X,得分为Y,
则EX,DY分别为(  )
A、0.6,60
B、3,12
C、3,120
D、3,1.2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,墙上挂有边长为2的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为1的圆孤,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是(  )
A、
π
4
B、
π
8
C、1-
π
4
D、1-
π
8

查看答案和解析>>

科目:高中数学 来源: 题型:

圆C:x2+y2+2x-1=0和直线l:3x+4y+8=0交与A,B不同的两点,则三角形△ABC(C为圆心)的面积为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

3x
-
1
x
n的展开式中只有第5项的二项式系数最大,则展开式中的常数项是(  )
A、28B、-28
C、70D、-70

查看答案和解析>>

科目:高中数学 来源: 题型:

已知多面体ABCDE中,AB⊥面ACD,DE⊥面ACD,AC=AD=CD=DE=2,AB=1,F为CE的中点.
(Ⅰ)求证:AF⊥CD
(Ⅱ)求直线AC与平面CBE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱柱ABC-A1B1C1中,已知AB=BC=2,∠ABC=90°,点A1在底面ABC的投影为B,且A1B=2
3

(1)证明:平面AA1B1B⊥平面BB1C1C;
(2)设P为B1C1上一点,当PA=
29
时,求二面角A1-AB-P的正弦值.

查看答案和解析>>

同步练习册答案