精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=-x+2,
(1)判断函数的单调性并用定义证明;
(2)画出函数的图象.(直接描点画图)

分析 (1)先设在所给区间上有任意两个自变量x1,x2,且x1<x2,再用作差法比较f(x1)与f(x2)的大小,做差后,应把差分解为几个因式的乘积的形式,通过判断每一个因式的正负,来判断积的正负,最后的出结论.
(2)由解析式,可得函数的图象.

解答 解:(1)此函数在R为减函数.…(2分)
证明:由原函数得定义域为R,
任取x1,x2∈R,且x1<x2
∵f(x1)-f(x2)=(-x1+2)-(-x2+2)=x2-x1…(4分)
又∵x1,x2∈R,且x1<x2,∴x2-x1>0,即f(x1)>f(x2)…(6分)
故函数f(x)=-x+2在R为减函数.…(8分)
(2)如图所示
…(12分)

点评 本题主要考查了定义法证明函数的单调性,做题时应该严格按照步骤去做.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知奇函数$f(x)=\left\{{\begin{array}{l}{-{x^2}+4x(x>0)}\\{0(x=0)}\\{{x^2}+mx(x<0)}\end{array}}\right.$

(1)求实数m的值,并在给出的平面直角坐标系中画出函数y=f(x)的图象;
(2)若函数f(x)在区间[-2,a-2]上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若抛物线y2=2px(P>0)的准线经过椭圆$\frac{x^2}{3}$+y2=1的一个焦点,则p=2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,拿一张矩形的纸对折后略微展开,竖立在桌面上,折痕与桌面的位置关系是垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知A(1,2,3),B(2,-1,1),点M在线段AB上,且AM:MB=1:2.则M坐标为$(\frac{4}{3},1,\frac{7}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1的右焦点为F,过F作斜率为2的直线l,直线l与双曲线的右支有且只有一个公共点,则双曲线的离心率范围$(1,\sqrt{5}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知曲线C的方程为:|x|+y2-3y=0,则:
(1)y的取值范围是[0,3];
(2)曲线C的对称轴方程是x=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若x是三角形内的一个最小角,则函数y=$\frac{sinxcosx+1}{sinx+cosx}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.同时掷两枚骰子,所得点数之和为5的概率为(  )
A.$\frac{1}{12}$B.$\frac{1}{21}$C.$\frac{1}{9}$D.$\frac{1}{11}$

查看答案和解析>>

同步练习册答案