(本小题满分12分)如图,四棱锥
的底面ABCD是平行四边形,
底面ABCD,
,
.
![]()
(1)求证:
;
(2)点E是棱PC的中点,求点B到平面EAD的距离.
(1)证明详见解析;(2)
.
【解析】
试题分析:本题主要考查线线垂直、线面垂直、点到面的距离等基础知识,同时考查分析问题解决问题的能力、推理论证能力、运算求解能力. 第一问,利用线面垂直“PA⊥底面ABCD”的性质可得PA⊥CD,而PC⊥CD,则利用线面垂直的判定可得CD⊥平面PAC,所以CD垂直于面PAC内的线;第二问,由于
为等腰三角形,所以AE⊥PC,且
,利用第一问中的结论,可知AE⊥CD,利用线面垂直的判定得AE⊥平面PCD,作辅助线CF⊥DE,则可得CF⊥平面EAD,从而可判定CF即为点C到面EAD的距离,在
中解出CF的长即可.
试题解析:(Ⅰ)证明:
因为PA⊥底面ABCD,所以PA⊥CD,
因为∠PCD=90,所以PC⊥CD,
所以CD⊥平面PAC,
所以CD⊥AC. …4分
(Ⅱ)因为PA=AB=AC=2,E为PC的中点,所以AE⊥PC,
.
由(Ⅰ)知AE⊥CD,所以AE⊥平面PCD.
作CF⊥DE,交DE于点F,则CF⊥AE,则CF⊥平面EAD.
因为BC∥AD,所以点B与点C到平面EAD的距离相等,
CF即为点C到平面EAD的距离. …8分
在Rt△ECD中,
.
所以,点B到平面EAD的距离为
. …12分
![]()
考点:线线垂直、线面垂直、点到面的距离.
科目:高中数学 来源:2014-2015学年江苏省宿迁市高三上学期第一次摸底考试理科数学试卷(解析版) 题型:解答题
(本小题满分10分)如图,在直三棱柱
中,已知
,
,
,点
,
分别在棱
,
上,且
,
,
.
![]()
(1)当
时,求异面直线
与
所成角的大小;
(2)当直线
与平面
所成角的正弦值为
时,求
的值.
查看答案和解析>>
科目:高中数学 来源:2014-2015学年江苏省宿迁市高三上学期第一次摸底考试理科数学试卷(解析版) 题型:填空题
若将甲、乙两个球随机放入编号为
,
,
的三个盒子中,每个盒子的放球数量不限,则在
,
号盒子中各有一个球的概率是 .
查看答案和解析>>
科目:高中数学 来源:2014-2015学年河北唐山市高三上学期期末考试文科数学试卷(解析版) 题型:解答题
(本小题满分10分)选修4-4:坐标系与参数方程
极坐标系的极点为直角坐标系
的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同. 已知曲线C的极坐标方程为
,斜率为
的直线
交y轴于点
.
(1)求C的直角坐标方程,
的参数方程;
(2)直线
与曲线C交于A、B两点,求
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com