精英家教网 > 高中数学 > 题目详情

已知函数的图象经过点
(1)求函数的解析式;
(2)设,用函数单调性的定义证明:函数在区间上单调递减;
(3)解不等式:

(1),(2)详见解析,(3).

解析试题分析:(1)求函数的解析式,只需确定的值即可,由函数的图象经过点,得,再由,(2)用函数单调性的定义证明单调性,一设上的任意两个值,二作差,三因式分解确定符号,(3)解不等式,一可代入解析式,转化为解对数不等式,需注意不等号方向及真数大于零隐含条件,二利用函数单调性,去“”,注意定义域.
试题解析:(1),解得: ∵ 且;   3分
(2)设上的任意两个值,且,则
        6分
在区间上单调递减.  8分
(3)方法(一):
,解得:,即函数的定义域为;     10分
先研究函数上的单调性.
可运用函数单调性的定义证明函数在区间上单调递减,证明过程略.
或设上的任意两个值,且
由(2)得: ,即
在区间上单调递减.                    12分
再利用函数的单调性解不等式:
上为单调减函数.,    13分
,解得:
.                         15分
方法(二):           10分
得:;由得:                       13分
.                         15分
考点:函数解析式,函数单调性定义,解不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数f(x)是定义在(-1,1)上的偶函数,在(0,1)上是增函数,若f(a-2)-f(4-a2)<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ex-ex(x∈R且e为自然对数的底数).
(1)判断函数f(x)的奇偶性与单调性;
(2)是否存在实数t,使不等式f(xt)+f(x2t2)≥0对一切x都成立?若存在,求出t;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的定义域;
(2)判断的奇偶性并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知幂函数为偶函数.
(1)求的解析式;
(2)若函数在区间(2,3)上为单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数.

(1)当时,画出函数的大致图像;
(2)当时,根据图像写出函数的单调减区间,并用定义证明你的结论;
(3)试讨论关于x的方程解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上的奇函数,且
(1)求的值
(2)若,求的值
(3)若关于的不等式上恒成立,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数过点.
(1)求实数
(2)将函数的图像向下平移1个单位,再向右平移个单位后得到函数图像,设函数关于轴对称的函数为,试求的解析式;
(3)对于定义在上的函数,若在其定义域内,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(Ⅰ)当时,判断的奇偶性,并说明理由;
(Ⅱ)当时,若,求的值;
(Ⅲ)若,且对任何不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案