已知.
(Ⅰ)当时,判断的奇偶性,并说明理由;
(Ⅱ)当时,若,求的值;
(Ⅲ)若,且对任何不等式恒成立,求实数的取值范围.
(Ⅰ)既不是奇函数,也不是偶函数;(Ⅱ)或;
(Ⅲ)当时,的取值范围是;当时,的取值范围是;当时,的取值范围是.
解析试题分析:(Ⅰ)对函数奇偶性的判断,一定要结合函数特征先作大致判断,然后再根据奇函数偶函数的定义作严格的证明.当时,,从解析式可以看出它既不是奇函数,也不是偶函数.对既不是奇函数,也不是偶函数的函数,一般取两个特殊值说明.
(Ⅱ)当时,, 由得,这是一个含有绝对值符号的不等式,对这种不等式,一般先分情况去绝对值符号.这又是一个含有指数式的不等式,对这种不等式,一般将指数式看作一个整体,先求出指数式的值,然后再利用指数式求出的值.
(Ⅲ)不等式恒成立的问题,一般有以下两种考虑,一是分离参数,二是直接求最值.在本题中,分离参数比较容易.分离参数时需要除以,故首先考虑的情况. 易得时,取任意实数,不等式恒成立.
,此时原不等式变为;即,这时应满足:,所以接下来就求的最大值和的最小值.在求这个最大值和最小值时,因数还有一个参数,所以又需要对进行讨论.
试题解析:(Ⅰ)当时,既不是奇函数也不是偶函数
∵,∴
所以既不是奇函数,也不是偶函数 3分
(Ⅱ)当时,, 由得
即或
解得
所以或 8分
(Ⅲ)当时,取任意实数,不等式恒成立,
故只需考虑,此时原不等式变为;即
故
又函数在上单调递增,所以;
对于函数
①当时,在上单调递减,,又,
所以,此时的取值范围是
②当,在上,,
当时,,此时要使存在,
必须有 即,此时的取值范围是
综上,当时,的取值范围是;
当时,
科目:高中数学 来源: 题型:解答题
已知偶函数y=f(x)定义域是[-3,3],当时,f(x)=-1.
(1)求函数y=f(x)的解析式;
(2)画出函数y=f(x)的图象,并利用图象写出函数y=f(x)的单调区间和值域.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某地区注重生态环境建设,每年用于改造生态环境总费用为亿元,其中用于风景区改造为亿元。该市决定制定生态环境改造投资方案,该方案要求同时具备下列三个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年改造生态环境总费用至少亿元,至多亿元;③每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得高于每年改造生态环境总费用的25%.
若,,请你分析能否采用函数模型y=作为生态环境改造投资方案.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数对任意,都有,当时,
(1)求证:是奇函数;
(2)试问:在时 ,是否有最大值?如果有,求出最大值,如果没有,说明理由.
(3)解关于x的不等式
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com