精英家教网 > 高中数学 > 题目详情
20.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$=(-4,3),$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$垂直,则|$\overrightarrow{b}$|的值是5.

分析 令($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)=0得出${\overrightarrow{b}}^{2}$=25,从而得出|$\overrightarrow{b}$|=5.

解答 解:∵$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$垂直,∴($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)=${\overrightarrow{a}}^{2}-{\overrightarrow{b}}^{2}$=0,
∴${\overrightarrow{b}}^{2}$=${\overrightarrow{a}}^{2}$=25,
∴|$\overrightarrow{b}$|=5.
故答案为:5.

点评 本题考查了斜率垂直与数量积的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某公司计划在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟.甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.设该公司在甲、乙两个电视台做广告的时间分别为x分钟和y分钟.
(Ⅰ)用x,y列出满足条件的数学关系式,并在坐标系中用阴影表示相应的平面区域;
(Ⅱ)该公司如何分配在甲、乙两个电视台做广告的时间使公司的收益最大,最大收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知△ABC内角A,B,C的对边分别是a,b,c,若cosB=$\frac{1}{4}$,b=4,sinC=2sinA,则△ABC的面积为(  )
A.$\frac{{2\sqrt{15}}}{3}$B.$\sqrt{15}$C.$2\sqrt{15}$D.$4\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某品牌洗衣机专卖店在国庆期间举行了八天的促销活动,每天的销量(单位:台)如茎叶图所示,则销售量的中位数是15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.北宋 欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其扣,徐以杓酌油沥之,自钱孔入,而钱不湿.因曰:‘我亦无他,唯手熟尔.’”可见技能都能透过反复苦练而达至熟能生巧之境的.若铜钱是半径为1cm的圆,中间有边长为0.5cm的正方形孔,你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为(  )
A.$\frac{1}{π}$B.$\frac{1}{4π}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若$\frac{π}{4}$<α≤β≤$\frac{π}{3}$,则2α-β的取值范围是($\frac{π}{6}$,$\frac{5π}{12}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow{a}$=(-3,4),向量$\overrightarrow{b}$与$\overrightarrow{a}$方向相反,且$\overrightarrow{b}$=λ$\overrightarrow{a}$,|$\overrightarrow{b}$|=1,则实数λ的值为(  )
A.-$\frac{3}{4}$B.-$\frac{1}{5}$C.$\frac{1}{5}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\left\{\begin{array}{l}{5,(0≤x≤1)}\\{f(x-1)+3,(x>1)}\end{array}\right.$.
(1)求f(2),f(5)的值;
(2)当x∈N*时,f(1),f(2),f(3),f(4),…构成一数列,求其通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a,b,c,d均为正数,且ad=bc
(Ⅰ)证明:若a+d>b+c,则|a-d|>|b-c|;
(Ⅱ)t•$\sqrt{{a}^{2}+{b}^{2}}$$\sqrt{{c}^{2}+{d}^{2}}$=$\sqrt{{a}^{4}+{c}^{4}}$+$\sqrt{{b}^{4}+{d}^{4}}$,求实数t的取值范围.

查看答案和解析>>

同步练习册答案