精英家教网 > 高中数学 > 题目详情
10.某公司计划在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟.甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.设该公司在甲、乙两个电视台做广告的时间分别为x分钟和y分钟.
(Ⅰ)用x,y列出满足条件的数学关系式,并在坐标系中用阴影表示相应的平面区域;
(Ⅱ)该公司如何分配在甲、乙两个电视台做广告的时间使公司的收益最大,最大收益是多少?

分析 (I)根据广告费用和收益列出约束条件,作出可行域;
(II)列出目标函数z=3000x+2000y,根据可行域判断最优解的位置,列方程组解出最优解得出最大收益.

解答 解:(Ⅰ)设该公司在甲、乙两个电视台做广告的时间分别为x分钟和y分钟,
则x,y满足的数学关系式为 $\left\{\begin{array}{l}{x+y≤300}\\{500x+200y≤90000}\\{x≥0}\\{y≥0}\end{array}\right.$,即$\left\{\begin{array}{l}{x+y≤300}\\{5x+2y≤900}\\{x≥0}\\{y≥0}\end{array}\right.$,
作出二元一次不等式组所表示的平面区域:

(Ⅱ)设公司的收益为z元,则目标函数为:z=3000x+2000y.
∴y=-$\frac{3}{2}x+\frac{z}{2000}$.
由图可知,当直线y=-$\frac{3}{2}x+\frac{z}{2000}$经过可行域上的点A时,截距$\frac{z}{2000}$最大,即z最大.
解方程组$\left\{\begin{array}{l}{x+y=300}\\{5x+2y=900}\end{array}\right.$ 得A(100,200),
∴zmax=3000×100+2000×200=700000.
答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告使公司的收益最大,最大收益是70万元.

点评 本题考查了简单线性规划的应用,列出约束条件作出可行域是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C所对的边分别为a,b,c,且asinB+$\sqrt{3}$acosB=$\sqrt{3}$c.
(Ⅰ)求角A的大小;
(Ⅱ)函数f(x)=5cos2(ωx+$\frac{A}{2}$)-3(ω>0),将y=f(x)图象的纵坐标不变,横坐标伸长到原来的$\frac{3}{2}$
倍后便得到函数y=g(x)的图象,若函数y=g(x)的最小正周期为π.当x∈[0,$\frac{π}{3}$]时,求函数f(x)值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设直线y=$\frac{1}{2}$x+b是曲线y=lnx的一条切线,则b的值为(  )
A.ln2-1B.ln2-2C.2ln2-1D.2ln2-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.画出解关于x的不等式ax+b<0(a,b∈R)的流程图及基本语句程序.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将9个学生分配到甲、乙、丙三个宿舍,每宿舍至多4人((床铺不分次序),则不同的分配方法有(  )
A.3710B.11130C.21420D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图四棱锥P-ABCD,三角形ABC为正三角形,边长为2,AD⊥DC,AD=1,PO垂直于平面ABCD于O,O为AC的中点,PO=1.
(1)证明PA⊥BO;
(2)证明DO∥平面PAB;
(3)平面PAB与平面PCD所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.{an}满足an+1=an+an-1(n∈N*,n≥2),Sn是{an}前n项和,a5=1,则S6=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在20件产品中5件次品,其余都是合格品,从中任取2件,2件都是合格品的概率为$\frac{21}{38}$(用分数作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$=(-4,3),$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$垂直,则|$\overrightarrow{b}$|的值是5.

查看答案和解析>>

同步练习册答案