精英家教网 > 高中数学 > 题目详情
18.画出解关于x的不等式ax+b<0(a,b∈R)的流程图及基本语句程序.

分析 根据题意,设计的程序框图应为不等式ax+b<0(a,b∈R)解的运算程序,需要分别分析a>0,a<0,a=0时的解,以及判断b是否为零.注意对a,b的讨论;写程序时要注意IF语句的嵌套.

解答 解:流程图如下:

程序如下:
INPUT a,b∈
   IF a=0 THEN
      IF b<0  THEN PRINT“任意实数”ELSE PRINT“无解”
   ELSE IF a>0  THEN PRINT“x<“;-b/a
        ELSE  PRINT“x>“;-b/a
        END IF
     END IF
   END IF
END

点评 本题考查了程序框图的画法与程序的编写,通过对已知题目的分析,设计解决实际问题的框图,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.某游轮在A处看灯塔B在A的北偏东75°,距离为$\frac{3\sqrt{6}}{2}$海里,灯塔C在A的北偏西30°,距离为$\sqrt{3}$海里,游轮由A向正北方向航行到D处时再看灯塔B在南偏东60°,则C与D的距离为(  )
A.$\sqrt{6}$海里B.$\sqrt{3}$海里C.2$\sqrt{3}$海里D.3海里

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点A($\sqrt{2}$,0),且离心率e=$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)如图,过椭圆C2:$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{2}$=1上任意一点P作椭圆C1的两条切线PM和PN,切点分别为M、N.当点P在椭圆C2上运动时,是否存在圆心在原点的定圆恒与直线MN相切?若存在,求出该定圆的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点A(0,3),若圆C:(x-a)2+(y-2a+4)2=1上存在点M,使|MA|=2|MO|,则圆心C的横坐标a的取值范围为[0,$\frac{12}{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:①该福利彩票中奖率为50%;②每张中奖彩票的中奖奖金有5元,50元和150元三种;③顾客购买一张彩票获得150元奖金的概率为p,获得50元奖金的概率为2%.
(1)假设某顾客一次性花15元购买三张彩票,求其至少有两张彩票中奖的概率;
(2)为了能够筹得资金资助福利事业,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.同时抛掷3枚硬币,三枚出现相同一面的概率为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某公司计划在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟.甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.设该公司在甲、乙两个电视台做广告的时间分别为x分钟和y分钟.
(Ⅰ)用x,y列出满足条件的数学关系式,并在坐标系中用阴影表示相应的平面区域;
(Ⅱ)该公司如何分配在甲、乙两个电视台做广告的时间使公司的收益最大,最大收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若圆x2+y2=R2(R>0)与曲线||x|-|y||=1的全体公共点恰好是一个正多边形的顶点,则R=$\sqrt{2+\sqrt{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某品牌洗衣机专卖店在国庆期间举行了八天的促销活动,每天的销量(单位:台)如茎叶图所示,则销售量的中位数是15.

查看答案和解析>>

同步练习册答案