| A. | $\sqrt{6}$海里 | B. | $\sqrt{3}$海里 | C. | 2$\sqrt{3}$海里 | D. | 3海里 |
分析 利用方位角求出B的大小,利用正弦定理直接求解AD的距离,直接利用余弦定理求出CD的距离即可.
解答 解:如图,在△ABD中,因为在A处看灯塔B在货轮的北偏东75°的方向上,距离为$\frac{3\sqrt{6}}{2}$海里,
货轮由A处向正北航行到D处时,再看灯塔B在南偏东60°方向上,![]()
所以B=180°-75°-60°=45°,
由正弦定理可得AD=$\frac{ABsinB}{sin∠ADB}$=$\frac{\frac{3\sqrt{6}}{2}×\frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}$=3海里;
在△ACD中,AD=3,AC=$\sqrt{3}$,∠CAD=30°,
由余弦定理可得:CD2=AD2+AC2-2•AD•ACcos30°=32+($\sqrt{3}$)2-2×3×$\sqrt{3}$×$\frac{\sqrt{3}}{2}$=3,
所以CD=$\sqrt{3}$海里.
故选:B.
点评 本题考查正弦定理与余弦定理的应用,注意方位角的应用,考查计算能力.属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com