精英家教网 > 高中数学 > 题目详情
19.甲,乙两人进行围棋比赛,共比赛2n(n∈N+)局,根据以往比赛胜负的情况知道,每局甲胜的概率和乙胜的概率均为$\frac{1}{2}$.如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为P(n).
(1)求P(2)与P(3)的值;
(2)试比较P(n)与P(n+1)的大小,并证明你的结论.

分析 (1)若甲、乙比赛4局甲获胜,则甲在4局比赛中至少胜3局,由此能求出P(2),同理能求出P(3)的值.
(2)在2n局比赛中甲获胜,则甲胜的局数至少为n+1局,从而$P({n+1})=\frac{1}{2}({1-\frac{{C_{2n+2}^{n+1}}}{{{2^{2n+2}}}}})$,由此能求出P(n)<P(n+1).

解答 解:(1)若甲、乙比赛4局甲获胜,则甲在4局比赛中至少胜3局,
所以$P(2)=C_4^3{({\frac{1}{2}})^4}+C_4^4{({\frac{1}{2}})^4}=\frac{5}{16}$,
同理$P(3)=C_6^4{({\frac{1}{2}})^6}+C_6^5{({\frac{1}{2}})^6}+C_6^6{({\frac{1}{2}})^6}=\frac{11}{32}$.
(2)在2n局比赛中甲获胜,则甲胜的局数至少为n+1局,
故$P(n)=C_{2n}^{n+1}{({\frac{1}{2}})^{2n}}+C_{2n}^{n+2}{({\frac{1}{2}})^{2n}}+…+C_{2n}^{2n}{({\frac{1}{2}})^{2n}}$=$({C_{2n}^{n+1}+C_{2n}^{n+2}+…+C_{2n}^{2n}})•{({\frac{1}{2}})^{2n}}=\frac{1}{2}({{2^{2n}}-C_{2n}^n})•{({\frac{1}{2}})^{2n}}=\frac{1}{2}({1-\frac{{C_{2n}^n}}{{{2^{2n}}}}})$,
所以$P({n+1})=\frac{1}{2}({1-\frac{{C_{2n+2}^{n+1}}}{{{2^{2n+2}}}}})$,
又因为$\frac{{\frac{{C_{2n}^n}}{{{2^{2n}}}}}}{{\frac{{C_{2n+2}^{n+1}}}{{{2^{2n+2}}}}}}=\frac{{4C_{2n}^n}}{{C_{2n+2}^{n+1}}}=\frac{{4\frac{{({2n})!}}{n!n!}}}{{\frac{{({2n+2})!}}{{({n+1})!({n+1})!}}}}=\frac{{4{{({n+1})}^2}}}{{({2n+2})({2n+1})}}=\frac{{2({n+1})}}{2n+1}>1$,
所以$\frac{{C_{2n}^n}}{{{2^{2n}}}}>\frac{{C_{2n+2}^{n+1}}}{{{2^{2n+2}}}}$,所以P(n)<P(n+1).

点评 本题考查概率的求法,是中档题,解题时要认真审题,注意n次独立重复试验中事件A恰好发生k次的概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=x-|x+2|-|x-3|-m(m∈R).
(Ⅰ)当m=-4时,求函数f(x)的最大值;
(Ⅱ)若存在x0∈R,使得f(x0)≥$\frac{1}{m}$-4,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.用反证法证明“a,b,c三个实数中最多只有一个是正数”,下列假设中正确的是(  )
A.有两个数是正数B.至少有两个数是正数
C.至少有两个数是负数D.这三个数都是正数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.等差数列{an}的前n项和为Sn,已知S10=0,S15=25,则使(n+1)Sn取最小值的n等于6或7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.高三(3)班爱心小组共有6位同学,决定分成四组在每个月四个周末去养老院看望烈士遗孀王奶奶,其中甲乙两同学恰好一起在第一周或第四周周末去养老院的概率为$\frac{1}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.给出一个正五棱柱,用3种颜色给其10个顶点染色,要求各侧棱的两个端点不同色,共有7776种染色方案.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的右焦点为F,P是椭圆上一点,点A(0,2$\sqrt{3}$),则△APF的周长最大值等于(  )
A.10B.12C.14D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某游轮在A处看灯塔B在A的北偏东75°,距离为$\frac{3\sqrt{6}}{2}$海里,灯塔C在A的北偏西30°,距离为$\sqrt{3}$海里,游轮由A向正北方向航行到D处时再看灯塔B在南偏东60°,则C与D的距离为(  )
A.$\sqrt{6}$海里B.$\sqrt{3}$海里C.2$\sqrt{3}$海里D.3海里

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点A($\sqrt{2}$,0),且离心率e=$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)如图,过椭圆C2:$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{2}$=1上任意一点P作椭圆C1的两条切线PM和PN,切点分别为M、N.当点P在椭圆C2上运动时,是否存在圆心在原点的定圆恒与直线MN相切?若存在,求出该定圆的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案