精英家教网 > 高中数学 > 题目详情
4.给出一个正五棱柱,用3种颜色给其10个顶点染色,要求各侧棱的两个端点不同色,共有7776种染色方案.

分析 先给上底面的5个顶点染色,每个顶点有3种方法,再给下底面的5个顶点染色,因为各侧棱的两个端点不同色,所以每个顶点有2种方法,根据分步计数原理可得.

解答 解:先给上底面的5个顶点染色,每个顶点有3种方法,共有35种方法,再给下底面的5个顶点染色,因为各侧棱的两个端点不同色,所以每个顶点有2种方法,共有25种方法,根据分步计数原理可得35•25=7776种染色方案,
故答案为:7776.

点评 本题考查排列、组合的综合运用,是典型的涂色问题;解决此类问题,一般要先定一点或面,进而对其他的点面分情况讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.用数字0,1,2,3,4可以组成无重复数字的三位偶数有(  )个.
A.24B.30C.16D.28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,在三棱锥P-ABC中,平面PAC⊥平面ABC,AB⊥BC,AB=BC=PA=PC=2,M,N为线段AC上的点,若MN=2,则三棱锥P-MNB的体积为(  )
A.$\frac{1}{3}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB.
(1)求证:平面BCE⊥平面CDE;
(2)若AB=1,求四棱锥C-ABED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.甲,乙两人进行围棋比赛,共比赛2n(n∈N+)局,根据以往比赛胜负的情况知道,每局甲胜的概率和乙胜的概率均为$\frac{1}{2}$.如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为P(n).
(1)求P(2)与P(3)的值;
(2)试比较P(n)与P(n+1)的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.容器C的内、外壁分别为棱长为2a和2a+2的正方体,容器S的内、外壁分别为半径为r和r+1的球形,若两个容器的容积相同,则关于两个容器的体积VC和VS,下列说法正确的是(  )
A.存在满足条件的a,r,使得VC<VS
B.对任意满足条件的a,r,使得VC=VS
C.对任意满足条件的a,r,使得VC>VS
D.存在唯一一组条件的a,r,使得VC=VS

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,直三棱柱ABC-A′B′C′中,AA′=2AC=2BC,E为AA′的中点,C′E⊥BE.
(1)求证:C′E⊥平面BCE;
(2)若AC=2,求三棱锥B′-ECB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.将3个相同的黑球和3个相同的白球自左向右排成一排,如果满足:从任何一个位置(含这个位置)自左向右开始数,数到最后一个球,如果黑球的个数不小于白球的个数,就称这种排列为“有效排列”,则出现“有效排列”的概率为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某工厂要制造A种电子装置45台、B种电子装置55台,需用薄钢板给每台装置配一个外壳.已知薄钢板的面积有两种规格:甲种薄钢板每张面积2m2,可做A、B的外壳分别为3个和5个,乙种薄钢板每张面积3m2,可做A、B的外壳均为6个.设工厂用x张甲种薄钢板,y张乙种薄钢板.
(Ⅰ)用x,y列出满足条件的数学关系式,并在坐标系中用阴影表示相应的平面区域;
(Ⅱ)甲,乙两种薄钢板各用多少张才能使用料总面积最小,最小面积是多少?

查看答案和解析>>

同步练习册答案