分析 (1)证明C′E⊥EC,利用C′E⊥BE,CE∩BE=E,即可证明C′E⊥平面BCE;
(2)利用等体积转化求三棱锥B′-ECB的体积.
解答 (1)证明:在矩形A′ACC′中,E为A′A中点且AA′=2AC,
∴EA=AC,EA′=A′C′,
∴∠AEC=∠A′EC=45°,
∴C′E⊥EC,
∵C′E⊥BE,CE∩BE=E,
∴C′E⊥平面BCE;
(2)解:∵B′C′∥BC,B′C′?平面BCE,BC?平面BCE,
∴B′C′∥平面BCE,
∴VB′-ECB=VC′-ECB,
∵C′E⊥平面BCE,
∴C′E⊥BC,
∵BC⊥CC′,C′E∩CC′=C′,
∴BC⊥平面ACC′A′′∴BC⊥CE,
∵AC=2,
∴BC=2,EC=EC′=2$\sqrt{2}$,
∴VB′-ECB=VC′-ECB=$\frac{1}{3}×\frac{1}{2}×2×2\sqrt{2}×2\sqrt{2}$=$\frac{8}{3}$.
点评 本题考查了线面垂直的性质与判定,棱锥的体积计算,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 12 | C. | 14 | D. | 15 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9}{25}$ | B. | $\frac{3}{5}$ | C. | $\frac{3}{10}$ | D. | $\frac{4}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{6}$海里 | B. | $\sqrt{3}$海里 | C. | 2$\sqrt{3}$海里 | D. | 3海里 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{3}{10}$ | C. | $\frac{2}{5}$ | D. | $\frac{7}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com