精英家教网 > 高中数学 > 题目详情
14.高三(3)班爱心小组共有6位同学,决定分成四组在每个月四个周末去养老院看望烈士遗孀王奶奶,其中甲乙两同学恰好一起在第一周或第四周周末去养老院的概率为$\frac{1}{13}$.

分析 先根据分组分配的方法求出所有的种数,再求出甲乙两同学恰好一起在第一周或第四周周末去养老院种数,根据概率公式计算即可.

解答 解:6位同学,决定分成四组,有(3,1,1,1)和(2,2,1,1)两种,
当为(3,1,1,1)有C63=20种,当为(2,2,1,1)有$\frac{{C}_{6}^{2}{C}_{4}^{2}{C}_{2}^{1}{C}_{1}^{1}}{{A}_{2}^{2}{A}_{2}^{2}}$=45种,
共分组的方法为20+45=65种,再分配到周一到周四,故有65A44=1560种,
其中甲乙两同学恰好一起的分组方法有C41+C42=10种,其中甲乙两同学恰好一起在第一周或第四周周末去养老院的有10C21A33=120种,
故甲乙两同学恰好一起在第一周或第四周周末去养老院的概率为$\frac{120}{1560}$=$\frac{1}{13}$,
故答案为:$\frac{1}{13}$

点评 本题考查了分组分配问题和古典概率的问题,关键分组,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在2014年11月1日早上,“娥娥五号试验星”成功返回地面,标志着我国探月工程三期任务圆满完成.为了让大家更好的了解我国的探月工程,某班特邀科技专家进行讲座,对我国探月工程进行了详细的分析后,由5名男生、3名女生组成一个研讨兴趣小组,若从中选取4名同学,每个同学随机选取专家老师指定的4个问题中的一个进行发言,则被选取的同学中恰好有2名女生,且4个问题都有人发言的不同情况有(  )种.
A.720B.840C.960D.1080

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某学校准备从4名男同学和2名女同学中选出2人代表学校参加数学竞赛,则至少一名女同学被选中的概率是$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在如图所示的空间几何体中,平面ACD⊥平面ABC,△ACD与△ACB是边长为2的等边三角形,BE=2,BE和平面ABC所成角为60°,且点E在平面ABC上射影落在∠ABC的平分线上.
(1)求证:DE∥平面ABC
(2)求此空间几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示,有一条长度为1的线段MN,其端点M,N在边长为3的正方形ABCD的四边上滑动,当点N绕着正方形的四边滑动一周时,MN的中点P所形成轨迹的长度为(  )
A.$8+\frac{π}{2}$B.8+πC.$12+\frac{π}{2}$D.12+π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.甲,乙两人进行围棋比赛,共比赛2n(n∈N+)局,根据以往比赛胜负的情况知道,每局甲胜的概率和乙胜的概率均为$\frac{1}{2}$.如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为P(n).
(1)求P(2)与P(3)的值;
(2)试比较P(n)与P(n+1)的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在一次围棋比赛中,共有24人参加,现今成6组,每组进行单循环赛,每组的第一名共6人,再分成2组进行单循环赛,两组的第一名决冠亚军,一共进行了多少场比赛?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥P-ABCD中,△PAD为正三角形,四边形ABCD是边长为2的菱形,
∠BAD=60°平面ABE与直线PA,PD分别交于点E,F.
(Ⅰ)求证:AB∥EF;
(Ⅱ)若平面PAD⊥平面ABCD,试求三棱锥A-PBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f(x)、g(x)分别是定义在R上的奇函数和偶函数,若f(x)+g(x)=3x,则下列结论正确的是(  )
A.f(1)=$\frac{8}{3}$B.g(1)=$\frac{10}{3}$C.若a>b,则f(a)>f(b)D.若a>b,则g(a)>g(b)

查看答案和解析>>

同步练习册答案