精英家教网 > 高中数学 > 题目详情
如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC。
(1)求证:PC⊥AB;
(2)求二面角B-AP-C的大小。
解:(1)取AB中点D,连结PD,CD
∵AP=BP,
∴PD⊥AB
∵AC=BC
∴CD⊥AB
∵PD∩CD=D
∴AB⊥平面PCD
∵PC平面PCD,
∴PC⊥AB。
(2)∵AC=BC,AP=BP,
∴△APC≌△BPC
又PC⊥AC,
∴PC⊥BC
又∠ACB=90°,即AC⊥BC,且AC∩PC=C,
∴AB=BP,
∴BE⊥AP
∵EC是BE在平面PAC内的射影,
∴CE⊥AP
∴∠BEC是二面角B-AP-C的平面角
在△BCE中,∠BCE=90°,BC=2,BE=
∴sin∠BEC=
∴二面角B-AP-C的大小为arcsin
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA、PB、PC两两垂直,且PA=3.PB=2,PC=1.设M是底面ABC内一点,定义f(M)=(m,n,p),其中m、n、p分别是三棱锥M-PAB、三棱锥M-PBC、三棱锥M-PCA的体积.若f(M)=(
1
2
,x,y),且
1
x
+
a
y
≥8恒成立,则正实数a的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,则当△AEF的面积最大时,tanθ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.
(Ⅰ)求证:DE‖平面PBC;
(Ⅱ)求证:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一绳子从A点绕三棱锥侧面一圈回到点A的最短距离是
3
,则PA=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,点D,E分别在棱
PB,PC上,且BC∥平面ADE
(I)求证:DE⊥平面PAC;
(Ⅱ)当二面角A-DE-P为直二面角时,求多面体ABCED与PAED的体积比.

查看答案和解析>>

同步练习册答案