精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2-9x+b的图象过点P(0,2),且f′(1)=0.
(1)求函数y=f(x)的解析式;     
(2)求函数y=f(x)的单调区间.
分析:(1)函数过P点,把P坐标代入到f(x)中得到b的值,又因为函数在x=1处的导数为0得到(1,0)在导函数上,求出导函数代入求出a即可;
(2)要求函数的单调区间令导函数大于或小于0,解出相应的不等式,即可判断函数的单调区间即可.
解答:解:(1)由函数的图象经过点(0,2)可知,b=2,…(2分)
又f'(x)=3x2+2ax-9,…(4分)
且f′(1)=0得a=3…(6分)
∴f(x)=x3+3x2-9x+2…(7分)
(2)f′(x)=3x2+6x-9=3(x2+2x-3)=3(x+3)(x-1)
令f′(x)>0,则3(x+3)(x-1)>0,解得x<-3或x>1…(9分)
令f′(x)<0,则3(x+3)(x-1)<0,解得-3<x<1…(11分)
∴函数y=f(x)的单调递增区间为(-∞,-3)和(1,+∞)
函数y=f(x)的单调递减区间为(-3,1)…(12分)
点评:此题考查学生利用待定系数的方法求函数解析式的运用能力,利用导数研究函数的单调性的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案