精英家教网 > 高中数学 > 题目详情
若f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,且当x>0时,f(x)=(
1
2
)x+1
,则f(x)的图象大致是(  )
A.B.C.D.
∵当x>0时,f(x)=(
1
2
)x+1

∴当x>0时,函数f(x)单调递增,排除A.
又当x>0时,f(x)∈(1,2),排除C,D.
故选:B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
px2+2
-3x
,且f(2)=-
5
3

(1)求函数f(x)的解析式;
(2)判断f(x)的奇偶性;
(3)判断函数f(x)在区间(0,1)上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)是单调递增的一次函数,且f[f(x)]=4x+3.
(1)求f(x)的解析式;
(2)若集合A={x|f(x)•f(x+1)≤0且x∈Z},求集合A.
(3)若g(x)是定义在R的奇函数,且x<0时,g(x)=f(x),求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

f(x)=x+
4
x

(1)判断f(x)的奇偶性;
(2)判断f(x)在(0,2]和[2,+∞)的单调性,并用定义证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(x)是连续的偶函数,且当x>0时,f(x)是单调的函数,则满足f(x)=f(
x+3
x+4
)
的所有的x的和为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定义在R上的奇函数f(x)的图象经过点(2,2),且当x∈(0,+∞)时,f(x)=loga(x+2).
(1)求a的值;
(2)求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)为奇函数,x>0时为增函数且f(2)=0,则{x|f(x-2)>0}=(  )
A.{x|0<x<2或x>4}B.{x|x<0或x>4}
C.{x|x<0或x>6}D.{x|x<-2或x>2}

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-ax,g(x)=
1
2
x2-lnx-
5
2

(1)若对一切x∈(0,+∞),有不等式f(x)≥2x•g(x)-x2+5x-3恒成立,求实数a的取值范围;
(2)记G(x)=
1
2
x2-
5
2
-g(x)
,求证:G(x)>
1
ex
-
2
ex

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数则下列结论正确的是(  )
A.是偶函数B.是增函数
C.是周期函数D.的值域为

查看答案和解析>>

同步练习册答案